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ABSTRACT

Many bounds for the all-terminal reliability of a network have
been proposed, but most assume that link failures are statistically
independent. This paper develops a lower bound for the all-terminal
reliability of a petwork when statistical dependence of link failures

occurs.

1. Introduction

A computer nctwork is typically modeclled as a probsbilistic graph; the
undirected edges of the graph represent bidirectional communication links, and the
podes represent sites of the network. Failure probabilities are associsted «ith each
edge of the network. Inp this setting, the ell-terminal religkility of the uetwork is
the probzbility that the operational edges provide comrmupication paths Letween
all pairs of nodes. Most studies have zssumed that link failures are statistically
icdependent; the resulting measure is a unique probability that the nctwork is
operational. Even with the assumption of statistical independcnce, all-terminal
relizbility is hard to compute [6], which has led to investigstions of efficiently
computable bounds [2,3,5).

- Wlen statistical independence does not hold, little is koown. IHailperin 4]
developed a livear programming model, which Zeimnel [7] used to cbiain the lest
possible bounds wlen the only information given coucerns failures of individual
lisks sud the depend=ccies between link fullures are unknewn.  These are called the
firgt-order bounds. lmprovemesnts on tlese bounds can ozly le cobtuized by
exploiting information about the failure probubilities of pairs of linde; the result of
employing this information in Hzilperin's model gives the second-order bounds.
Assous [1] developed second-order bounds for the two-terivipal relistility proliem
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using Hailperin's model; to obtain the lower bound, however, one must solve a
quadratic programming problem, and po computationally efficient technique is
koown for this. Ience, Assous produces a simple heuristic technique for producing
a lower bound using graph-theoretic techniques and the second-order information.
In section 3, we develop a similar heuristic lower bound in the case of all-terminal
reliability.

2. First-Order Bounds

In the weakest model, we assume that cach edge ¢; bas a success probability p;
satisfying a, < p, = ;. No other information about failures is known, and no
assumption of statistical independence is made. The network is coherent, however,
in that the failure of an edge cannot make a failed network operational. In this
context, Hailperin [1] showed that the tightest lower bound on all-terminal
reliability is obtained by solving the linear program

minimize Y

ScF
subject to

YPYs s b, 1sise

S|ees
3 Ys = e, 1=i=c
S|ies
Y = 1 -
sgi1,...e}

and ponnegativity constraints. In this linear program, F is the set of operational
configurations of the network, and S varies over all configurations, both failed and
operational,

The direct application of llzilperin’s model is computationally intractable,
since there are an exponential number of variables and constraints. Zemel [7]
showed how to solve an equivalent problem efficiently, and later Assous [1]
developed a simple computational method which we describe next. Assous showed
that the minimum value L achieved by Hailperin's linear program satisfies

L = maz(0,1 = min 1 — a,))
SeF 405
where F” is the set of all spanning trees of the network. Thus L is simply the
weight of a minimum weight spanning tree of the network obtained using 1 — a; as
edge weights.

Although computationally appealing, the first-order bounds are very poor
indeed for any practical purposes. For example, when p=0.9 for each link and the
network has more than ten nodes, the lower bound is rero. One carnot fault the
bounds for this, as there is no hope of obtaining a better bound unless additional
information is provided. Nevertheless, the need for better bounds is clear.
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3. Second Order Bounds

In an effort to improve the first order bounds, we assume that in addition to
the previous model, for every pair ¢,5 of edges, we bave bounds on g,;, the
probability that edges i and j fail simultaneously. In particular, we suppose that
f,-,- < q,; = 4,;. We continue to use first-order constraints, §; = ¢, < a,, where
g = 1-p;.

Once again, Hailperin's model can be used to set up a linear program; bere,
however, there is no easy way to circumvent the exponential size of the linear
program. We therefore resort to heuristic techniques. Given the network N we
first find the most reliable spanning tree T of N. For each edge ¢=(z,y) of T, let
L, be an upper bound on the probability that z ‘and y have no operational path
between them. Then a lower bound on the reliability is given by

I = ELG (*)
ecT

To obtain the first-order bound, we simply observe that L, < a,. However, second
order information can be used to improve this.

For each ¢eT, e=(z,y), construct a network N, by deleting each edge of T
from N and setting the weight of each edge f to a,,. Find a minimum weight path
P from z to g, if one exists. Let W, be the weight of the path P if one is found, ®
otherwise. Now observe that L, = W,. In fact, W, is an upper bound on the
probability that edge ¢ and path P fail simultaneously. One might consider
including further z—y paths, but then third- and higher-order information would
be required to bound L,; since only one path can be chosen, we select the most
reliable. Combining the two constraints, we have L, < min(a,,W,). Substituting
the values of L, obtained into (*) above, we obtain a lower bound on the all-
terminal reliability. This bound can, of course, be no worse than the first-order
bound, and is typically much better.

We have tested the new lower bound on a number of networks; to do so, we
assume that pairs of failures are statistically independent, but make no
assumptions about triples, quadruples, and so on.

The results of these tests are not surprising. Onbce statistical independconce
cannot be assumed, the bounds are significantly weaker than bounds which assume
statistical independence. For example, we computed bounds for a 6-regular, 6-
connected graph which is a “chordal ring”; it has nodes numbered 0 through 11,
and edges from node z to nodes z+1,z+3,z+5 for every z (arithmetic modulo
12). For all p <.9, the first order bound delivers a value of 0; however, the second
order bound improves on this dramatically. Nevertheless, the second order bound
is 0 for all p<.82. Comparing these bounds with bounds which do assume
statistical independence, they provide much weaker bounds on the reliability. To
illustrate this, we compare with the bounds from [3]:
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’7 Twelve Node Chordal Ring
p | First Order | Second Order [3]
8 0.0 0.0 005005
.85 0.0 247595 000265
! 0.0 660006 999934
92 12 788797 999983 |
94 34 881108 009997
06 56 947108 | 1.0-¢

4. Concluding Remarks

The most striking conclusion is that when one abandons the assumption of
statistical independence of edge failures, the usefulness of bounds to estimate
reliability is minimal. Nevertheless, in certain contexts no information about high-
order correlations is available, and the assumptions about statistical correlations
are dangerous. In these contexts, the second order bound developed here proves to
be a definite asset; the improvement in the accuracy of the bound makes the
collection of second order information worthwhile.
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