4: SBRC

RECIFE - 24 A 26 DE MARCO 86

Recent developments in protocol specification,
validation and testing*

Gregor v. Bochmann
Département d”IRO
Université de Montréal, Canada

Abstract:

The orderly introduction of new communication protocols, such as the
standards for Open Systems Interconnection, requires a careful analysis of the
proposed protocols and much effort for the development and testing of protocol
implementations. Much research has been done recently in the area of formal
description techniques (FDT) and their use for protocol design validation,
implementation development and testing. This paper gives an introduction to
these issues, and provides a review of recent research in the area. An attempt
is made to explain the general direction of the work on formal protocol
specifications, their wvalidation, and conformance testing of protocol
implementations. The use of formal specifications for deriving protocol
implementations is also discussed.

l. Introduction

The development of distributed computer systems requires the
establishment of communication protocols and their implementation in the
different system components. Presently, a large standardization effort is
under way with the purpose of establishing standardized communication
protocols which allow the interworking of distributed computer application
processes among heterogeneous computer systems, called Open Systems
Interconnection (0SI) [0SI 83]. The orderly introduction of new communication
protocols, for proprietary systems or Open Systems Interconnection, requires a
careful analysis of the proposed protocols and much effort for the development
and testing of protocol implementations.

Much research has been done recently in order to improve the working
methods for these activities. In this context the use of formal description
techniques (FDT) for the specification of communication protocols and services
has received much attention, since such techniques allow a more systematic
approach to protocol validation, implementation and testing as compared to the
traditional use of protocol specifications given in natural 1language.

This paper gives an introduction to the issues of protocol specification,
validation, implementation and testing, and gives a review of recent research
on methods and tools in this area. Section 2 contains an explanation of the
meaning of protocol and service specifications, the use of such specifications
in the development and implementation of distributed computer systems, and a
review of formal description techniques used for protocol and service specifi-
cations. Section 3 addresses the issues related to the validation of protocol
specifications. Implementation issues are discussed in Sections 4 and 5. The
development of protocol implementations based on the protocol specifications

* This work was supported by the Department of Communications Canada through
research contract OST 85-00155.

355

is discussed in Section 4 with special emphasis on the use of formal protocol
specifications. In Section 5, the issues related to the testing of protocol
implementations are discussed. This includes in particular the verification
that a protocol implementation conforms to the requirements defined by the
protocol specification. This aspect is of particular interest in the context
of OSI where systems developed by different manufacturers, possibly in
different countries are expected to interwork in a compatible manner.

2. Specification methods
2,1. The meaning of service and protocol specifications

As in [Boch 80], we assume that the communication architecture of a
distributed system is structured as a hierarchy of different protocol layers,
for example as defined in the OSI Reference Model [0SI 83]. Each layer
provides a particular set of Services to its users above, From their view-
point, the layer, together with the layers below, may be seen as a "black box"
or machine which allows a certain set of interactions with other users (see
Fig. 1). A user is concerned with the nature of the service provided, but not
with how the protocol manages to provide it,

This description of the input/output behavior of the protocol layer
constitutes a Service Specification of the protocol. It should be "abstract"
in the sense that it describes the types of commands and their effects, but
leaves open the exact format and mechanisms for conveying them (e.g. procedure
calls, system calls, interrupts, etc.). These formats and mechanisms may be
different for users in different parts of the system, and are defined by an
Interface Specification.

Service Specifications
Specifying the service to be provided by a layer of a distributed
communication system presents problems similar to specifying any software

module of a complex computer system. Therefore methods developed for software
engineering are useful for the definition of communication services. Usually,

USER USER
\ 2z

PROTOCOL:
LAYER

Fig. 1. Services provided by a protocol layer

a service specification is based on a set of Service Primitives which, in an
abstract manner, describe the operations at the interface through which the
service is provided. In the case of a transport service, for example, some
basic service primitives are,Connect, Disconnect, Send, and Receive, The
execution of a service primitive is associated with the exchange of parameter
values between the entities involved, 1i.e. the service providing and using
entities of two adjacent layers. The possible parameter values and the direc-—
tion of transfer must be defined for each parameter.

Clearly, the service primitives should not be executed in an arbitrary
order and with arbitrary parameter values (within the range of possible

356

values). At any given moment, the allowed primitives and parameter values
depend on the preceding history of operations. The service specification must

reflect these constraints by defining the allowed sequences of operations
directly, or by making use of a "state" of the service which may be changed as

a result of some operations.

In general, the constraints depend on previous operations by the same
user ("local" constraints), and by other users ('"global" constraints or "end-
to—end properties"). Considering again the example of a transport service, a
local constraint is the fact that Send and Receive may only be executed after
a successful Connect. An example of a global constraint is the fact that the
"message" parameter value of the first Receive on one side is equal to the
message parameter value of the first Send on the other side.

Protocol Specifications

Although 1t 1s irrelevant to the user, the protocol designer must be
concerned with the internal structure of a protocol layer. In a network
environment with physically separated users, a protocol layer must be
implemented in a distributed fashion, with Entities (processes or modules)
local to each user communicating among one another via the services of the
lower layer (see Fig. 2). The interaction among entities in providing a

USER USER

ENTITY 1 ENTITY 2

X ¥

LOWER LAYERS

Fig. 2. Internal structure of a protocol layer.

layer”“s service constitutes the actual-Protocol, Hence a protocol specifica-
tion must describe the operation of each entity within a layer in response to
commands from its users, messages from the other entities (via the lower layer
service) and also internally initiated actions (e.g. timeouts)

Abstraction and Stepwise Refinement

The specifications described above must embody the key concept of
Abstraction if they are to be successful. To be abstract, a specification
must include the essential requirements that an object must satisfy and omit
the unessential. A service specification is abstract primarily in the sense
that it does not describe how the service is achieved (i.e., the interactions
among its constituent entities), and secondarily in the sense that it defines
only the general form of the interaction with its users (not the specific
interface),

A protocol specification is a refinement or distributed "implementation"
of 1ts service specification in the sense that it partly defines how the
service is provided (i.e., by a set of cooperating entities). This "implemen-
tation" of the service is what is usually meant by the design of a protocol
layer. The protocol specification should define each entity to the degree

357

necessary to ensure compatibility with the other entities of the layer, but no
further. Each entity remains to be implemented in the more conventional sense
of that term, typically by coding in a particular programming language. There
may be several steps in this process until the lowest—-level implementation of
a given protocol layer is achieved, as shortly discussed in Section 4.

2.2. Review of specification methods

Various specification methods have been used for the definition of commu-
nication protocols and services. Besides informal methods, many more or less
formal specification methods have developed and used in this area. In many
cases, the specified system is modelled as a finite state machine [Boch 78h,
Zafi 80, Chow 84] or a Petri net [Diaz 82], or in some more general state
transition formalism which allows the consideration of the parameter values of
exchanged interactions. In other cases, high-level programming languages have
been used for defining protocol behavior. Other methods, which are less
"state-oriented", define the system behavior by specifying allowed interaction
sequences by wusing various kinds of sequencing expressions or grammar
formalisms, A review of specification techniques for communication protocols
and services can be found in [Boch 80]. Much recent work is presented in [Sun
82, Rudi 83, Yemi 84]. A tutorial on protocol specification and validation is
given in [Rudi 85].

Most of the specification methods were originally developed in a
different or more general context. This is also the case for algebraic speci-
fication methods (see for example [Miln 80)]) some of which are related to
abstract data type definitions [Guta 78, Logr 82]. This discussion cannot be
considered complete without mentioning the application of temporal logic
specification methods to the protocol area [Schw 82, Schw 83], and the use of
logic programming techniques as specification language or as support for
building validation tools [Sidh 83, Ural 84, Boch 85].

It 1is generally desired that the specification methods developed for
protocol specifications also be applicable for the specification of communi-
cation services. For example, a simple finite state transition formalism which
captures an important part of most protocol specifications is less useful for
the specification of communication services, since the service interactions
with two different users (see Figure 1) are usually not closely synchronized
with one another. Instead, most specifications of communication services
involve some kind of queues which correspond to the propagation of information
from one service user to the other.

Standardization

In recent years, the use of formal methods for the description and
validation of communication protocols has been a topic for discussion of
standardization bodies, such as IS0 and CCITT. In the context of the O0SI
standardization effort [OSI 83] some work on the standardization of formal
description methods, so-called "formal description techniques" (FDT) has been
persued [Viss 83, Dick 83]. Presently, three FDI“s are under consideration by
IS0 and CCITT for application to the specification of OSI protocols and
services. These methods are the following (in alphabetical order):

(a) Estelle [Este 85] is developed by Subgroup B of the IS0 TC97/SC21/WGl ad
hoc group on FDT. It is a method based on a finite state machine model
extended by the use of Pascal programming language elements to handle data
structures and more complex operations. A specified system may consist of a

358

larger number of interconnected state machine modules.

(b) Lotos [Loto 85] is developed by Subgroup C of the ISO TC97/SC21/WGl ad hoc
group on FDT, It is a method based on the formalism of Milner”s CCS [Miln 80]
which is combined with an abstract data type definition facility, called ACT
ONE [ACT ONE]. Similar to the other methods, it allows the construction of a
specification from several smaller components.

(c¢) SDL [SDL 84] was originally developed by CCITT for the description of
switching systems. It has also been found useful for the description of
communication protocols [Dick 83]. The method is based on an extended finite
state machine model, and is largely oriented towards a graphical representa-
tion.

Many trial specifications of various communication protocol standards in
the OSI area have been developed using these methods. The possibility has been
considered that such a formal protocol specification could in the future
represent the protocol standard.

2.3. The use of formal specifications

Most communication protocol and service specifications today are given in
an informal manner using natural language, sometimes complemented by semi-
formal tables or diagrams. It is important to note that the '"official"
authoritative specification of a protocol or service is used for the different
activities discussed below. If a formal specification can be used as the
authoritative definition, many aspects of these activities may be automated,
as discussed in the following sections. Protocol and service specifications
are used for the following purposes:

(a) For the validation of the service and protocol designs: In this area the
methods described in Section 3 may be applied.

(b) For the development of an implementation of the protocol: as noted above,
one major goal of protocol specification is to provide a basis for implementa-
tion. Some specification methods facilitate this goal more than others.
Programming language specifications may be quite close to implementations (but
often lack the desired degree of abstraction). Direct implementation of
"state machine" specifications by some form of translation into a programming
language is also relatively straightforward [Boch 79]. In many cases, these
implementation methods have been at least partially automated [Goud 76, Blum
82, Boch 85d, Kaji 85, Ausa 83],

(¢) For validating an implementation of the protocol, and in particular, for
assessing that the implementation conforms to the protocol specification: This
activity, also called "conformance testing', has received much attention
recently, 1in particular in relation with the development of O0SI protocol

standards [0SI C, IHLPS 84, IHLPS 85].
3. Protocol design validation
3.1. General considerations
As explained in [Boch 80] validation is essentially a demonstration that

an object meets its specifications. Recalling from Section 2,1 that Services
and Protocol Entities are the two major classes of objects requiring specifi-

359

cation for a protocol layer, we see there are two basic validation problems
that must be addressed: (1) the protocol”s design must be verified by
analyzing the possible interactions of the entities of the 1layer, each
functioning according to 1its (abstract) protocol specification and
communicating through the underlying layer”s service, to see whether this
combined operation satisfies the layer”s service specification; and (2) the
implementation of each protocol entity must be verified against its abstract
protocol specification.

The somewhat ambiguous term "protocol verification" is usually 1intended
to mwean this first problem, also called "protocol design validation'. Because
protocols are inherently systems of concurrent independent entities
interacting via (possibly unreliable) exchange of messages, validation of
protocol designs takes on a characteristic communication oriented flavor. The
validation of a protocol implementation, usually done by "ordinary"
programming techniques, 1is often called "protocol implementation assessment",
and is further discussed in Section 5.

The service specification itself cannot be verified, but rather forms the
reference against which the protocol is verified. However, the service
specification can be checked for consistency. It must also properly reflect
the users” desires, and provide an adequate basis for the higher levels which
use 1it. Unfortunately, techniques to achieve these latter goals are still
poorly understood.

It 1is important to note that protocol design validation also depends on
the properties of the lower-layer protocol. In verifying that a protocol
meets its service specification, it will be necessary to assume the properties
of the lower layer”s service. If a protocol fails to meet its service speci-
fication, the problem may rest either in the protocol itself, or in the
service provided by the lower layer.

The overall validation problem may be divided into two categories,
general and service specific properties.

General properties are those properties common to all protocols that may
be considered to form an implicit part of all service specifications.
Foremost among these is the absence of deadlock (the arrival in some system
state or set of states from which there is no exit). Completeness, or the
provision for all possible inputs, 1is another general property. Progress or
termination may also be considered in this category since they require minimal
specification of what constitutes "useful” activity or the desired final
state.

Specific properties of the protocol, on the other hand, require
specification of the particular service to be provided. Examples include
reliable data transfer in a transport protocol, copying a file in a file
transfer protocol, or clearing a terminal display in a virtual terminal
protocol. Definitions of these features make up the bulk of service specifi-
cations.

3.2. Validation methods

The methods for protocol design validation are usually closely related to
the specification methods used for the definition of the communication
protocol and services. Many results have been obtained with simple state
transition models since they are relatively easy to handle. However, they

360

ysually concern only a simplified model of the protocol and tend to lead to a
very large number of cases (states) to be considered. More powerful specifica-
tion techniques often allow for more powerful verification methods, however,
they are often difficult to apply. Recent work in the area of protocol design
validation can be found in [Sun82, Rudi 83, Yemi 84].

In this area, the distinction between the logical analysis and analysis
by simulation and testing 1is useful. A validation method following the
"logical analysis" paradigm determines through some logical reasoning that the
protocol specification has certain required properties. The best known method
of logical analysis used in protocol design validation are
(a) reachability analysis, applied mainly with specifications given in the
form of finite state machines (FSM),

(b) derivation of invariants about reachable states based on the structure of
specifications given in the form of Petri nets,

(¢) inductive proof techniques involving assertions about states and interac-—
tion parameters, which are mainly applied when the protocol is given in some
kind of programming language (these methods were originall§ developed for the
verifrication of programs), and

(d) symbolic execution which, similar to program proving, handles program—like
specifications, and follows all possible execution branches analytically (it
i{s 4in that sense similar to reachability analysis, but like program proving
requires the proof of assertions on program variables and interaction
parameters).

The logical analysis of performance questions is usually called "analytic
performance analysis". Performance analysis usually requires the establishment
of some kind of performance model. Some experience with the inclusion of
performance parameters in the formal specifications of the qualitative
properties in an extended FSM model are reported in [Boch 84]. Such integrated
specifications make it possible to 1ink the performance model directly to the
qualitative specification of the system, and simplifies the overall system
specification. This idea is not new; performance parameters have often been
associated with FSM and Petri-met models. Some new results of performance
analysis in this area are reported in [Rudi 83b, Razo 84].

In contrast to logical analysis, the methods of simulation and testing
provide results which are less definite. The absense of design errors cannot
be guaranteed (it can only be stated that no error was found), and performance
results are often approximate. On the other hand, these methods are usually
easier to be applied, at least in the case where the specifications are
relatively complex. One of the first applications of this method is described
in [LeLa 78]. More extensive performance simulation studies for protocol
systems involving several layers were described in [Wolf 82]. The use of
simulation for validating the qualitative properties of protocols is
‘emphasized in [Jard 83, Prob 84]. The use of a specification technique which
‘allows the writing of "executable specifications" is an important considera-
tion for these applications.

Many published papers on protocol verification present some particular
verification technique, and demonstrate this technique by discussing 1its
application to a simple protocol of more or less academic nature. Some papers
treat more complex, realistic protocol examples. Some a posteriori verifica-—
.tions of protocol standards or standardization proposals have also been
presented poiating out certain difficulties with the adopted or proposed
procedures. Most of these verification efforts were based on a state
reachability analysis, and in some cases automated systems were used. The

361

results have had some influence on the standardization process, and have
probably influenced the implementation of these procedures.

4. Implementation

As mentioned in Section 2.1, a protocol specification usually defines
only those aspects of the behavior of a protocol entity which are required for
compatibility with the other entities within the given protocol 1layer. This
means that many aspects which characterize a protocol implementation must be
defined by the protocol implementor; these implementation choices include the
determination of the interface through which the communication service is
provided to the users and other aspects which determine the performance and
usability of the protocol implementation.

This situation applies not only when informal protocol specifications are
used, but also when the implementation is based on a formal specification of
the protocol which models precisely the authoritative definition. Formal
specifications, based on the formal nature of their language, lend themselves
to automated implementation (see references in Section 2.3). However, only
part of the code of an implementation is obtained automatically, since many
implementation choices are not defined by the formal specification, and
general-purpose support routines are generally needed for user interfaces,
buffer management and timer functions.

For the development of protocol implementations, a formal specification
may be useful for the following reasons:

(a) A formal specification is normally already structured in such a way that
the development of an implementation in a programming language based on the
formal specification is easier than the development of an implementation based
on the informal protocol specification.

(b) In many cases, a relatively straightforward transformation from the formal
specification to the implemented program is possible [Boch 79, Serr 85].

(c) Part of the implementation may be obtained automatically by the use of an
FDT compiler [Blum 82, Gerb 83].

It 1s our experience that in the case of an implementation based on a
formal specification, the main implementation effort is involved with the
development and implementation of the interfaces with the operating system and
users, and buffer management. The development of the procedures for coding and
decoding PDU”s usually also require much effort, unless the protocol uses some
standard coding scheme, such as ASN1 [ASNl] for which these functions may be
obtained through automated tools.

An example of a Transport protocol implementation based on a formal
specification and the use of an FDT compiler is described in [Serre 86]. The
proposed implementation methodology involves the following phases of implemen-
tation refinement:

(1) The starting point for the implementation is a formal specification of the
protocol, called '"reference specification"”, which is assumed to be the
authoritative definition of the protocol., (Note that in many cases, the
reference specification must be checked against the authoritative definition
given in an informal manner).

362

(2) A so-called "detailed protocol specification" is elaborated which makes
many of the implementation choices mentioned above, but which leaves those
cholces open which are related to the run-time environment under which the
protocol implementation is to operate. This specification is written in the
same FDT as the reference implementation, and is obtained from the latter by
careful additions and transformations. In the example considered [Serre 86],
the detailed specification provides a refined user interface, defines the
reaction of the protocol entity for certain error situations, and reduces the
non—-determinacy related to PDU concatenation, acknowledgements, and the
management of underlying network connections.

(3) In the last phase, the detailed specification is adapted to the particular
run—time environment, and the program code of the implementation is generated.
[Serre 86] contains a comparison of manual code development and the use of an
FDT compiler. As mentioned above, only part of the code can be directly
generated by such a compiler. During this phase, the issues of buffer
management, process structure, and the details of the user interface must be
added.

It 1is important to note that the same "detailed protocol specification",
as defined above, may be useful for a large number of different implementation
projects.

5. Conformance testing

The wvalidation of a protocol implementation is usually performed mainly
through testing. Two concerns must be distinguished in this context:

= protocol conformance assessment is concerned with the question whether a
given protocol implementation conforms to all rules defined in the
corresponding protocol specification, and which of the defined options are
supported by the implementation.

= implementation assessment, 1in a more general context, is concerned in addi-
tion with other properties of the implementation which are not specified by
the protocol specification, such as "how does the implementation react to
unexpected (invalid) user interactions?", "how many simultaneous connections
can be supported?", or '"what is the performance of the implementation?".

Possible architectures for the testing of higher-level communication
protocols have been elaborated by the standardization committees to be used
for the conformance testing of 0SI protocol implementations [0SI C]. The most
commonly used architecture [Rayn 82] foresees so-called "remote" (or
"distributed") testing where the test system, also called "lower tester", acts
as the peer protocol entity of the implementation under test (IUT), as shown
in Figure 3. It is important to note that the complete testing of the IUT
requires the presence of a test user, also called "upper tester", which
verifies that the executed service primitives relate correctly to the protocol
data units exchanged between the IUT and the remote test system.

363

upper
tester
lower
tester 10T
| 1
Figure 3

The remote testing architecture has been widely adopted for the
assessment of higher-level 0SI protocols. There are, however, the following
difficulties associated with this approach. First, the presence of an
intermediate network makes it difficult to wuse the architecture for
performance measurements, and for testing the implementation under test (IUT)
for cases of certain network errors. A portable test unit is proposed to
solve these problems [Rayn82, Ansa 84], Second, the architecture (as well as
the portable test unit) assumes that there is no direct synchronization
between the lower tester and the upper tester. Several variations of this
basic testing architecture have been proposed [Boch 83f, Rafi 85]. These
variations address in particular the question of how the operations of the
lower and upper tester may be synchronized. It has been noted that certain
test sequences present synchronization problems [Sari 83, Sari 84], and that
therefore certain protocol functions may be difficult to test.

While in the past, most issues in the protocol conformance area have been
resolved by pragmatic considerations, formal methods seem to be useful in this
area for the following purposes:

(1) Formal specification methods may be used for specifying test sequences.,
(2) The formal specification of the protocol standard may be used as the basis
for deriving test sequences [Sari 84, Sari 85b or 85].

(3) The observed sequence .of interactions of an implementation under test may
be checked against the formal protocol specification in order to detect any
deviation from the protocol specification [Jard 83b, Ural 84, Boch 85].

To answer the question in which form test sequences should be specified,
the following issues must be considered:

(a) Due to the distributed test architecture, there are two sides that parti-
cipate in the definition of the applied test sequences: the upper and lower
testers. There seem to be the following two approaches to the specification
of test sequences:

(1) Separate specifications for the upper and lower tester are given for each
test case,

(2) The possible expected interactions of the IUT during the test, including
test input and the allowed outputs generated by the IUT, are specified in a
closed form,

(b) Some aspects of a protocol specification usually allow eertain freedom in
choices made by the implementation (sometimes called "non-determinism").
Therefore, it is not always known, when the test sequences are designed, in
which way the IUT will respond to a given test input. Depending on the

364

observed output from the IUT, different subsequent test inputs may be
required. This presents a problem to the specification of tests sequences by
scenarios. (In the simplest case, a scenario is a predetermined sequence of
input interactions, possibly interleaved with expected outputs). In order to
be able to adapt conveniently to the unpredictable choices of the IUT, test
cases may be specified by describing the upper and lower testers as processes
[Boch 83f]; the same specification language as used for the protocol specifi-
cation may be used,

Concerning the selection of test sequences, the methods developed for
software [Howd 78, Chow 78] and hardware [That 79, Nait 81] testing can be
largely adapted to the area of protocol testing., The use of techniques
developed for systems described as FSM is described in [Sari 82, Ansa 84].
However, these techniques do not handle the more complex aspects of interac-
tion parameters and additional program variables.

Most testing methods for hardware [That 79] assume a certain fault model
for the IUT. It is not clear what kind of fault model could be assumed for
protocols, or design errors, in general., A simple example of a fault model
about the coding and decoding function of a protocol is described in [Sari
84b].

While many software testing techniques are based on the knowledge of the
structure of the tested program, in the case of protocol assessment the IUT
must be considered in general as a black box. However, the software
engineering methods based on the program structure can be applied by guiding
the test case selection by the structure of the protocol specification,

Assuming as objectives for the selected test sequences the coverage of
all branches in all transitions of the protocol specification (which is
assumed to be given in an extended FSM model), and the coverage of all data
flows between parameters of input and output interactions, as well as
variables of the protocol specification, a test design methodology is
described in [Sari 84b] which takes into account the possible parameter values
of interaction primitives, It is interesting to note that this approach also
allows to partially formalize the decomposition of a protocol specification
into a number of "functional” blocks. An ad hoc functional decomposition was
the basis for the test sequences described in [Boch 83f], which turn out to be
similar to those obtained by the systematic application of the test
methodology described in [Sari 84b]. The result of applying these tests to two
implementations of the Transport protocol is described in [Cern 84].

The question whether an IUT satisfies the requirements of the protocol
specification is usually solved by including the expected behavior of the TIUT
in the specification of the test sequences (e.g. by including expected outputs
in test scenarios). The approaches present the disadvantage that it 1is
usually quite difficult to derive the necessary elements of the test specifi-
cation from the reference specification of the protocol (on which such deci-
sions should be based),

An alternate approach to deciding the conformance is the use of an
"arbiter" (sometimes called "oracle") which determines whether the sequence of
observed input and output interactions in which the IUT was involved is a
possible sequence according to the protocol specification [Jard 83, Prob 84],
A method for deriving such an arbiter from the reference specification of the
protocol 1is described in [Jard 83] for the case of an extended FSM model,
including the possibility of non-determinism. The construction of such

365

arbiters is complicated by the fact that the protocol specification may allow
for non-deterministic behavior.

6. Conclusions

Much work on formal description techniques and their use for protorol
design, implementation and testing has been performed in recent yearu. [t
seems that some of these methods have advanced enough to make them usnable 1n
the design and implementation of real systems involving real-life protoenls,
including standards such as the OSI protocols being developed. Many of these
real-life protocols are sufficiently complex to warrent the use of autumated
tools. These tools may be used for some of the work related to the validation
of the design, the development of implementations, or the testing of the
protocols implementations. Experience with certain tools of this kind has
already been reported in the literature. It can be expected that such tools
will be dimproved in the near future in order to make their application more
simple and efficient.

References

[ACT ONE] H.Ehrig and B.Mahr, Fundamentals of Algebraic Specifications 1,
Springer Verlag, 1985.

[ASN1] IS0 TC97/sC21, DP...., 1985, "Specification of Abstract Syntax
Notation One",

[ASN]] IS0 TC97/S8C21, DP...., 1985, "Specification of Abstfact Syntax
Notation One",

[Ansa 83] J.P. Ansart, V. Chari, and D. Simon, "From formal description to
automated implementation using PDIL" in Protocol Specification,
Testing and Verification (IFIP/WG6.1), H.Rudin and C.H.West, eds.,
North Holland, 1983,

[Blum 82] T.P. Blumer and R. Tenney, "A formal specification technique and
implementation method for protocols", Computer Networks 6,3 (July
1982), pp. 201-217,

[Boch 78g] G.v. Bochmann, "Finite state description of communication
protocols", Computer Networks 2 (1978), pp. 361-372, reprinted in
"Communication Protocol Modeling", edited by C. Sunshine, Artech
House Publ., 1981,

[Boch 79] G.v. Bochmann and J. Tankoano, "Development and structure of an X.25
implementation", IEEE Tr. SE-5, No. 5 (Sept. 1979), pp. 429-439,
reprinted in "Communication Protocol Modeling", edited by C.
Sunshine, Artech House Publ,, 1981.

[Boch 80] G.v. Bochmann, C,A. Sunshine, (invited paper) "Formal methods in
communication protocol design", IEEE Tr. COM-28, No. 4 (April 1980),
PP. 624-631, reprinted in "Communication Protocol Modeling", edited
by C. Sunshine, Artech House Publ., 198l.

[Boch 83f] G.v. Bochmann, E. Cerny, M. Maksud, B, Sarikaya, "Testing of

Transport protocol implementations", Proc. CIPS Conference, Ottawa,
1983, pp.123-129.

[Boch

[Boch

[Boch

[Cern

[Chow

[Chow

[Diaz

[Dick

[Este

[Gerb

[Gerb

[Guta

[Howd

84 |

85]

85d]

84)

78]

84)

82]

83]

78]

78]

[IHLPS 84)

[IHLPS 84]

[Jard

83b]

366

G.v. Bochmann, "Performance statements in Subgroup B
specifications", Report for DOC research contract oST83-00082, CERBO
Informatique Inc., Feb. 1984,

G.v.Bochmann, R.Dssouli, W.Lopes de Souza, B.Sarikaya, H.Ural, "Use
of Prolog for building protocol design tools", Proc. 5-th IFIP
Workshop on Protocol Specification, Verification and Testing,
Toulouse, June 1985.

G.v.Bochmann, G,Gerber, J.M.Serre, "Semi-automatic implementation of
communication protocols", Proc. CIPS Congress 1985, Montreal, pp.

E.Cerny, G.v.Bochmann, M.Maksud, A.Leveille, J,M.Serre, and
B.Sarikaya, "Experiments in testing communication protocol
implementations", Proc. FTCS "84, IEEE, pp.

T.S5.Chow, "Testing design modelled by finite-state machines", IEEE
Trans. SE-4, 3, 1978,

C.H. Chow, M.G. Gouda, and S.S. Lam, "An Exercice in constructing
Multi-phase Communication Protocols", Proc. Communications
Architectures and Protocols, (ACM SIGCOMM), Montreal, June 1984, pp.
42-49,

M. Diaz, "Modelling and Analysis of Communication and Cooperation
Protocols using Petri Net based Models", Computer Networks, Vol. 6,
no. 6, Dec. 82, pp. 419-441

G.J. Dickson, and P. de Chazal, "Application of the CCITT SDL to
protocol specification", IEEE Trans. COM, to be published.

IS0 DP 9074 (May 1985) "Estelle: A formal description technique
based on an extended state transition model”.

G. Gerber, "Une methode d”implantation automatisee de systemes
specifies formellement", MSC thesis, Univ. of Montreal, 1983,

G. Cerber, "Une methode d“implantation automatisee de systemes
specifies formellement", MSC thesis, Univ. of Montreal, 1983,

J.V.Gutag, E.Horowitz and D.R.Musser, "Abstract data types and
software validation", Comm,ACM, 21 (Dec, 1978).

W.E. Howden, "A survey of dynamic analysis methods", in Software
Testing and Validation Techniques, E. Miller and W.E. Howden eds.,
IEEE EHD 138-8, 1978.

Proceedings of Conference on Introduction of High Level Protocol
Standards for OSI (Department of Communications), Ottawa, May 1984.

Proceedings of Conference on Introduction of High Level Protocol
Standards for OSI (Department of Communications), Ottawa, May 1984,

C.Jard and G.v.Bochmann, "An approach to testing specifications",
Journal of Systems and Software, Vol.3, 4(Dec. 1983), pp.315-323.

367

[Kaji 85] M.Kajiwara, H.Ichikawa, M.Itoh, and Y.Yoshida, 'Specification and
verification of switching software', IEEE Tr. Comm. COM-33 (1985).

[LeLa 78] G.Le Lann and H.LeGoff, "Verification and evaluation of
communication protocols", Computer Networks 2, 1 (Febr. 1978), pp.
50-69.

[Logr 82] L. Logrippo, "Specification of Transport service using finite-state
transducers and abstract data types'", CCITT Q39/VII,FDT-77, Geneva,
Dec. 1982.

[Loto 85] ISO DP 8807 (1985), "LOTOS: a formal description technique”.

[Miln 80] R.Milner, "A calculus of communicating systems"
CS, No. 92, Springer Verlag, 1980.

, Lecture Notes in

[Nait 81] S.Naito and M.Tsunoyama, "Fault detection for sequenctial machines
by transition tours", Proc. FTCS, 1981, pp. 238-243.

[0SI 83] Special issue on Open Systems Interworking, Proc. of the IEEE, Dec.
1983.

[0ST C] IS0 TC97/SC21/WGl ad hoec group on conformance testing, 1985,
[0ST C] IS0 TC97/8C21/WC1 ad hoc group on conformance testing, 1985,

[Rafi 85] D. Rafiq, R. Castanet, C. Chraibi, j.P. Goursaud, J. Haddad, X.
Perdu, "Towards and environment for testing OSI protocols", IFIP
Workshop on Protocol Specification, Verification and Testing
(Toulouse, 1985), North Holland.

[Rayn 82.] D. Rayner, "A system for testing protocol implementations", Computer
Networks 6,6 (Dec. 1982).

[Razo 84] R.R.Razouk, "The derivation of performance expressions for
communication protocols from timed Petri net models", Proc. ACM
SIGCOMM Symposium, 1984.

[Rudi 83] Proceedings of 3-rd Workshop on "Protocol specification, Testing and
verification" (IFIP/WG 6.1), H. Rudin and C.H. West, eds., North
Holland, 1983.

[Rudi 83b] H.Rudin, "From formal protocol specification towards performance
prediction", in Protocol Specification, Testing and Verification,
H.Rudin and C.West (eds.), North Holland Publ. Comp., 1983.

[Rudi 85] H.Rudin, "An informal overview of formal protocol specification",
IEEE Communication Magazine, Vol. 23,3 (March 1985),

[Rudi 85] H.Rudin, "An informal overview of formal protocol specification",
IEEE Communication Magazine, Vol. 23,3 (March 1985).

[Sari 82] B. Sarikaya and G.v. Bochmann, "Some experience with test ‘sequence
generation for protocols™, Proc. 2-nd Int. Workshop on Protocol
Specification, Testing and Verification, North Holland, 1982, pp.
555=567

[Schw

[Serr

[Serr

[8idh

[Suns

[That

[Ural

[Viss

[Wolf

[Yemi

[Sari

[Sari

[Sari

[Sari

[Schw

85]

86 |

83]

82]

79]

84]

83]

82]

84]

83]

84 |

84b]

85b]

82]

368

on Protocol Specification, Testing and Verification, (ed. C.
Sunshine), North Holland 1982.

R.L. Schwartz, P.M, Melliar-Smith, F.H. Vogt, "An interval logic for
higher-level temporal reasoning", Proc. ACM Symp. on Princ. of
Distr. Computing, Montreal, Aug. 1983, pp. 173~186.

J.M.Serre, "Methodologie d”implantation du protocole Transport
classe 0/2", MSc thesis, Dept. d"IR0O, Universite de Montreal, 1985,

J.M.Serre, E.Cerny, G.v.Bochmann, "A methodology for implementing
high-level communication protocols", Proc. 19-th Hawai Int. Conf. on
Systems Sciences, Jan. 1986,

D.P.Sidhu, "Protocol verification via executable logic
specifications"”, Proc. IFIP Workshop on Protocol Specification,
Verification and Testing, North-Holland Ed., pp. 237-248 (1983).

Proceedings of 2-nd Workshop on "Protocol specification, Testing and
verification" (IFIP/WG 6.1), C. Sunshine, ed., North Holland, 1982,

S«.M.Thatte and J.A.Abraham, "Test generation for general
microprocessor architectures", Proc. 9-th Symp. on Fault-Tolerant
Comnputing, June 1979, pp. 203-210.

H.Ural and R.L.Probert, "Automated testing of protocol

specifications and their implementations'", Proc. ACM SIGCOMM
Symposium, 1984,

C.A.Vissers, G.v. Bochmann and R.L.Tenney, "Formal description
techniques by ISO/TC97/SC16/WGl ad hoc group on FDT", Proceedings of
the IEEE, vol, 71, 12, pp. 1356-1364, Dec. 1983.

B.Wolfinger and O.Drobnik, "Simulation of protocol layers of
communication in computer networks'", in Computer Networks and
Simulation II, S.Schoemaker (ed.), North Holland Publ. Comp., 1982,

Proceedings of 4-th Workshop on Protocol specification, validation
and testing, IFIP, Y.Yemini ed., North-Holland, 1984,

B. Sarikaya and G.v. Bochmann, "Synchronization issues in protocol
testing", Proc. ACM SIGCOMM Symposium, Austin, 1983, pp.121-128,

B. Sarikaya and G.v. Bochmann, "Synchronization and specification
issues in protocol testing", IEEE Trans. on Comm., COM-32, No.4
(April 1984), pp. 389-395.

B.Sarikaya, PhD thesis, McGill University, Montreal, March 1984.

B.Sarikaya, G.v.Bochmann, and E.Cerny, "A test design methodology
for protocol testing", submitted for publication.

R. Schwartz and P.M. Melliar-Smith, "From state machines to temporal
logic: specification methods for protocol standards", IFIP Workshop

