4: SBRC

RECIFE - 24 A 26 DE MARCO 86

THE CONIC TOOLKIT FOR BUILDING DISTRIBUTED SISTEMS x
M. Sloman, J. Kramer, J. Magee.

Department of Computing, Imperial College, London, England, SWT 2BZ.

Abstract. CONIC provides a set of tools for building flexible distributed systems for
embedded applications such as factory autopation, telecompunications, process monitoring
and control. The CONIC programming language is used to program individual software
modules which communicate by naming only local entryports and exitports, This gives
configuration independence and allows reuse of the modules in variocus situations. A
separate configuration language is used to specify a system by creating icstances of
modules and interconnecting exit and entryports. The configuration language is alsc
used to specify changes which can be performed dynamically without shutting down the
complete system. These features of a CONIC system provide the flexibility for adapting
to changing requirements. This paper describes the CONIC programming and configuration
languages as well as the run-time support needed for dyramic configuration. The paper
also gives an overview of the Unix based tools available” for building and testing
software for distributed target computers. Finally we discuss experiences of using
these tools and future work planned on the project.

Kevwords. Distributed systems; programming languages; configuration management; dynamic
shange; program development enviromments.

INTRODOCT IDN of component programming and systenm building
(configuration) have been referred to as "programm—

Large embedded systems are expected to have a long ing in the =mmall™ and "programming in the large®
lifetime. They do not remain static during their respectively. In CONIC this is reflected in
operational life, but evolve as application separate component programoing and configuration
requirements change and as new technology is languages.
incorporated. In fact the introduction of the
computer system itselfl tends to act as a stimulus
for change in the applicaticn enviroment, and so CORIC MODULE PROGRAMMING [ANGUAGE
the services provided by the system must evolve.
For example in the process control industry, Jask Modyles
computers may be introduced gradually, starting
with stand alone controllers, then plant-wide Modularity is a key property for providing
automatic monitoring and eventually evolving to an flexibility, The Conic programming language is
integrated distributed computer control system. based on Pascal, with extensions for modularity and

message passing [Eramer BL].
In addition to evolutionary change, distributed

systems must cater for operatiomal changes. The language allows the definition of a task module
Componenta may have to be physically relocated to type which ias a self-contained, sequential task
cater for modifications to the plant being {(process). A task module type is written and
controlled., After failures of parts of the syatem, compiled independently from the particular
continued, posaibly degraded, operation should be configuration in which it will run ife. it provides
possible by manual or autamatic recrganisation. configuration independence in that all references
Distributed embedded systems should alsc cater for are to local objects and there is no direct razing
redizensioning: extension by addition of existing of other modules or communication entities. This
compenents or removal of superfluous ones. means there is npo configuration inforzation
. embedded in the prograzming language and so o
The CONIC approach to building distributed systems recogpilation is neecded for configuration changes
provides the flexibility for the system to evolve as is the case with other languages such as CSP
and ‘change to meet changing requirements and {Hoare TB] and ADA [DOD 80].
conditions. A CONIC distributed system can easily
fincorporate new functionmality in response to At configuration time, module instances are created
evoluticnary changes and allows reorganisation of from mocdule types. Module instances exchange
existing componentas in response to operational pessages and perforz a particular function in the
changes. CONIC supports dynamic reconfiguration so system such as contreolling z device oOr managing a
that it 4s not necessary to shut dowb a1 cozplete resource, Multiple instances of & aodule type can
systez in order tc make changes. be crezted on the same or different stations in a
distributed svstem and a station can contain pDany
It has been widely recognised that in order to g¢ifferent module=s instances. A major objective cf
build large software systems, 1t is necessary to CONIC is to allow the production of reuseable
cecozpcse Lthe system into components which can be modules [Wegner B834). Multiple instances of the
separately prograczed, compiied and teated. The sane zodule may be used within a particular system;
systex is then ccanstructed as a configuraticn of the szme module type can be reused in different
these softvare conponents. The separate activities versiona of a system and a cpodule type may be a

* Presented at 6th IFAC Distributed Computer Control System Workshop, Monterey
California, USA. May 1985.

standard component which ia reused {n different
applications.

Fig. ' is an example of a task module whizh reads a
senscr whenever a signal i3 received from a clock.
If the sensor reading {3 greater than a preset
iimit the wmodule sends an alarm, It can also
receive messages juerying the current senscr
reading.

0
i

>>elock i
) alara>>
>>query V

SENSOR

task module sensor (limit:integer)
type valtype = record
value:integer;
state:boolean;
end;
exitport alarm : valtype;
entryport clock :signaltype;
query : signaltype reply valtype;
var reading : valtype;
function readsensor():integer
{performs I/0 to read sensor}
end;
begin
reading, value
reading.state :
loop
select
receive signal from clock
=> with reading do
begin value := readsensor();
if value > limit then begin
state :=z true;
send reading to alamm;
end;
and;

0;
false;

Won

or
receive signal from query reply reading;
end;

Fig. 1! Example Task Module

CONIC modules have a well definmed interface which
specifies all the information required to use the
module in a system. The interconnections and
information exchanged by modules i3 apecified in
terms of ports. An exitport denotes the interface
at which message transactions can be initiated and
specifies a local name and message type in place of
the destination name. In fig. 1, alarm nessages
are sent to the task's 'alarm' exitport. At
configuration or run time, the exitport can be
linked to a compatible entryport (ie, of type
'valtype') of any task which wishes to receive

alarm messages. The 'sensor' task's entryports
'clock' and 'query' in fig. 1, denote the interface
at which message transactions can be received. At

configuration or run tinme, any task with a
compatible exitport can be linked to these
entryports. The programming language uses local
names within the task inatead of directly naming
the source and destination of messages. The
binding of an exitport to an entryport is part of
the configuration language and cannct be performed
within the programming language. There is thus no
need to recompile a task module when it is reused
in different situations. This provides complete
configuration independence for a task module.

At creation time, instantiation parameters can be
passed to a module to tailor a module type ' for a
particular enviromment, for example the alarm limit
value passed to the sensor task in fig. 1, or the
device address passed to a device driver,

143,

There are two classes of ports whish zorrespond -o
the message transaction classes described oelow.

* Requesat-reply Ports, such as 'guery' in fig. 1 are

bidirectional. They specify both a request anc
reply oesasage type. Notify Ports such as 'clock'
and 'alarm' are unidirecticonal ie. <they hnave no
reply part. For convenience, it is possible :o
define families (arrays) of identical porta such as
in the nurse module in fig. 7.

Ports define all the information required to use a
module and so it is very simple to replace a module
with a new or different version with the same
operational interface.

Communication Primitives

Communication primitives are provided to send a
message to an exitport or receive one from an
entryport. The message types must correspond to the
port types. The primitives provide the same syntax
and semantics for local (within a station) and
remote (inter-station) communication. Differences
in performance between local and remcte
communication are inevitable due to network delays.
This Communication Transparency allows modules to
be allocated either to the same or different
stations, which can be particularly useful during
the development of embedded systems in that modules
can be fully tested together in a large computer
with support facilities and then later distributed
into target stations.

There are two classes of measage transactions:

a) A Notify transaction provides unidirectional,
potentially wmulti-destination message passing.
The send operation is asynchronous and does not
block the sender, although the receiver may

block waiting for a mDessage. There is a
(dimensionable) fixed size queue of messages
associated with each entryport. Messages are

held in order of arrival at the entryport. When
no more buffers are available the oldest message
in the queue is overwritten. The Notify can be
used for time critical tasks such as within the
communication system, with the Qqueue size
corresponding to a flow=control window.

. [Xp ep|
send msg Lo Xp PP =eeeaea > 2> receive msg from ep
i notify |

R

0
i
[
i
1
1
[l
1

Fig. 2 The Notify Transaction

b) A Request Reply transaction provides bidirec=-
tional synchronous message passing. The sender
is blocked until the reply i3 received from the
receiver. A fail clause allows the sender to
withdraw from the transaction on expiry of a
timeout ('tval' in fig. 3) or if the transaction
fails. The receiver may block waiting for a
request. On receipt of a request, the receiver
may perform some processing and return a reply
message. In place of a normal reply, the
receiver may either forward the request o
another receiver (thereby allowing third party
replies) or it may abort the transaction.

b e | request e '
i |Xp =====> &p| H
\send req to xp >> >>receive req from ep|
! wait rep =>,.! (emeeea e :
i fail tval =>..! reply \reply rep to ap; !
lend; H e H

]]

]]

Fig. 3 Requeat-Reply Transaction

Standard functions are provided to determine
whether an exitport is linked to an entrypert, the
mmber of messages queued at an entryport or the
reason for a send-wait failing.

Any of the receive, receive-reply, receive-forward,
or receive-abort primitives can be combined in a
sslect statement (fig. 4). This enables a task to
wait on messages [from any number of potential
entryports. An optional guard can precede each
receive to further define conditions upon which
messages should be received, A timeout can be used
to limit the time spent waiting in the select
statement.

| select !
epl! when G1]
>> receive req! from ep! reply signal |
: or H
ep2| when G2 H
22 receive req2 from ep2 H
! RS e xp1
forward ep2 to xpl >
ep3 or]
> receive magl from epd =>
or -

when Gn timeout tval
=> {timeout action]

- m ———— A —— ==

Fig. & Selective Receive

Refinitions Unit

The module i3 the basic reuseable sof tware
component within a aystem. However there are many
definitions which are common between different
modulea within a asystenm. Definitions of
constants, types, functions and procedures may be
defined in separate definitions units. These can
be compiled independently and can be imported into
a module to define a context. This avoids errors
introduced by having to redefine message types in
communicating modules. For example the definition
of measage type 'valtype' in fig. 1 would, in
practice, be imported from a definitions unit
called 'sensortypes' by means of a declaration such
as:
use sensortypes : valtype;

The definitions unit allows the introduction of
language Pextensiona® without modifying the
compiler. For example a set of standard string
definitions and manipulation procedures can be made
available as a definitions unit as shown in fig. 5.
This exports 2 functions 'strlength' and 'strepy',
and a type 'string', but prevents the representa-
tion of ‘'string' being visible outside the
definitions unit.

define stringdefs: strlength, strcopy
opaque string;

const strmax = 128;
type string = record
len:integer;
ch :array{l..strmax] of char;
end;
function strlength (s:string):integer;
procedure strcopy (31,s2:string);

LR

end,
Fig. 5 An Outlipes Definitions Unit
We are currently experimenting with a variation of

the definitions unit which includes data and
initialisation code. This 4is asimilar to an

150

Abstract ©2ata Type but only a single instance zan
be declared when it i3 importec into & tas< module.
However multiple instances of *he encapuslazing
task module can be declared. The encapsulating
task can access the Jdata via exported procedures or
directly (if the data variables are exported) but
otker modulea must access the data via the
encapsulating task's message passing interface.

The programming language 3supports the standard
Pascal I/0 procedures, which are automatically
transformed by the compiler into message pas3aing
operations on standard exitports. In addition,
CONIC provides simple primitives to support =the
programming of device handlers as application
tasks. Fig. 6 showa a transmitter driver for a
synchronous communications line. It makes uase of a
set of sapecial kernel calls imported [rom
'‘kercalls' definitions unit. The task raises its
priority to 'system' to ensure it is not preempted
by any other task while tranmitting a message.
The ‘'waltio' procedure suspends the task until an
interrupt occurs on the vector apecified as a
parameter. When an interrupt occurs the acheduler
is npot called but rather the hardware effectively
schedules the relevant device driver via the
interrupt vector. Different device drivers may
have different hardware priority levels, allowing
nested interrupts. This {3 similar to the
facilities provided in Modula (Wirth 77]. It is
simpler and more efficient than the conversion of
interrupts to messages within the underlying kernel
as in ADA [DoDBO] or SR [Andrews B82].
task module tranamit (status,vector : addreas);
use commstypes : magtype,;

kercalls : priority, [system, normal etc.}

setpriority, waitio;

entryport tx : magtype reply signaltype;
var txstat : "set of 0..15;

txbuff : “char;

msg : msgtype;

begin
ref (txstat,status); [converts addreas to}
ref (txbuff, status+2); [pointer typel
loop
receive msg from tx;
setpriority (systempr);
for 1 := 1 to msg.length
begin
txbuff” := msg.chars[i];
txstat” := [4]; {enable devicel
waitio (vector);

txstat® 1= [13 [disable}
end;
reply aignal to tx;
end;
setpriority (normal);
end
end.

Fig. 6 Device Driver Task Module

CONIC CONFIGURATION LANGUAGE

One of the Kkey elements in the provision of
flexibility is the need to separate the programming
of individual software components (task module
types) from the building of a system from instances
of modules. This has led to the development of the
CONIC Configuration Language [Dulay 84] which 1is
used to specify the instancea of module types, the
interconnection of module instances and the mapping
of a logical configuration onto physical stations.
The same language can be used to specify both an
initial system and subsequent changes to the
system,

Ao Example Configuration Specification

The following example describes a patient
monitoring system consisting of four bed . modules
and a nurse module, Alarms from beds are displayed
at the nurse module and the nurse can query the
teds to obtain current sensor readings.

BED[1] NURSE

(]
|

|

|

i - alarmad) ——>>alarms[1] |

I 1 M |l

! sta:ua((—\xxwalmﬂ"] !

] 1] (]
1 <<query[1]

] .

]
Aile -———“‘—‘——-—-—“quew[“] '

i pe— =

system ward;
use bedmonitor, nurseunit;
const nbed = &;
scanrate = 100;
create family k:[71..nbed]
bed(k]: bedmonitor(scanrate) at node (k);
create nurse : nurseunit at node (5);
link family k:(1,.nbed]
bed[k].alarms to nurse.alarms(k];
nurse,query[k] to bed(k].status;
end,

Fig. T Ward Monitoring System

In the above example, the use construct specifies a
context by identifying the set of module types from
which the system will be constructed, The named
module instances within the system are declared by
the create consatruct. The actual values of the
module parameters are provided at creation time.
The create construct ocan also ceclare a family
(array) of module instances of a particular type as
shown for bed, The optional at node part of the
Create construct defines the station addresa at
which the module is to be oreated. Logical to
physical mapping will be further discussed in
later.

The link construct specifies the interconnection of
module instances by binding a module exitport to a
module entryport, Both type and operation
compatibility are checked so an exitport can only
be linked to an entryport of the Same data and
transaction type. Multiple exitports can be linked
to a single entryport which is particularly useful
for conneccing oclients to servers (eg. a file
server), A single exitport can be linked to
multiple entryports which provides multidestination
message transactions. Multidestination is generally
used for notify transactions, but can apply to
request-reply transactions. The first reply from a
multidestination request {s accepted and all others
are discarded. This can be used with replicated
components for reliabllity purposes.

Structuring Configuration Specifications

The modules in a distributed system often exhibit a
hierarchical relationship, For example a database
subsystem makes use of file servers, which may
themselves consist of directory servers, record
access servers and disc drivers. This structure
can be represented by nesting software components
at the configuration. level by means of group
modules, A group module type is a configuration
specification and identifies a colleotion of module
types, instances of those types and their inter-
connection, The consatituent modules may be . the
primitive task modules containing a single proceas
or group modules. The group modules also have an

interface defined in terms of exit- and entryports,
as well as formal parameters., This Structuring of

151

the specification i3 essential for large systems
with many module instances, otherwise the name
space would become Urmanageable and the
configuration specification unreadable.

The structure of a group module is defined by the
use, create, and link constructs described
previously, The interface to the module is also
defined in terms of exitports and eatryports and so
from the outside it is not possible to distinguish
between a task and a group module. Thia provides
configuration abstraction, In the patient
monitoring system the 'bedmonitor' module is
actually defined by a group as shown in fig. 8 The
group interface ports are bound to the ports of
component module instances using link statementa
Within the group module specification. For example
in fig. 8, the internal 'monitor.alarms' exitport
is linked to the 'alarms’ exitport at the group
interface. Similarly the ‘'status' interface
entryport is linked to internal 'monitor.status'
entryport.

This linking is merely a name mapping and does not
entall any run-time overheads {e. there is no
copying or queuing of messages at interface ports
to group modules. The interface port name is
global within the group specification and must be
unique, whereas ports on different module instances
can have the same name as they are identified by
"module_name.port name".

[1
i '

areal <{<==<< prompta
i i alarms

areaz <<{--<< data

1 1
1 i '

keyboard >>-=>> input status<<--<<status

MONITOR

]

]

]
>==>>alarms

]

)

s s

DISPLAY

|
|
I
i
i
i
|
1
]
I
I
i
]
]
1
I
|
L

BEDMON ITOR
group bedmonitor(scanrate:integer);

use patienttypes: alarmstype,
patientstatustype;
exitport alarms:alarmstype;
entryport statusisignaltype
reply patientstatustype;

{ == now define group structure}
use monitoring,beddisplay;
create monitor : monitoring(scanrate);
display : beddisplay;

l1ink {internal}
monitor.prompts to display.areal;

moni tor.data to display.area2;

display.keyboard to monitor.input;
[Lnterface}

monitor,alarms to alarms;

status to monitor.status;

end.
Fig. 8 Bedmonitor Group

A Segment Module is a restricted form of group
module in that the constituent module {nstances
share an address space and 30 must be in a single
station. The components of a segment module may
share procedures and paas pointer wvalues in
messages. However there is no global data within a
segment module, Any shared data must be encap-
sulated within a task module and references
explicitly passed by messages. The only synchroni-
sation primitives available for control of access
£0 shared objects in a segment module are the
message primitives. For example the Conic modules
which implement the various layers of the communi-
cation system within a station pass pointers to

message buffers in order to reduce the overheads of
copying messages between these modules.

Also a group of tasks may be required to provide
parallelism within a particular function. The
terminal driver i{s an example of a set of closely
related tasks which are grouped to form a sSegment
module (ie. input from a terminal keyboard and
output to 1its screen). This capability for
parallelism at the task level encourages simpler
cooperating sequential tasks rather than multi-
threaded ones. The concept of a segment module is
similar to that or”a Guardian in Argus [Liskov B3],
by, our wsepment modules do not automatically
provide resiliency.

Change Specifications

A CONIC system i3 flexible in that it allows easy
configuration changes. This is achieved by means
of a change specification. In the following
example the patient monitoring system is extended
by 4including a 'datalogger' module and the module
type 'nurseunit' is replaced with a new module type
Lo enable the nurse to display history information
from the 'log' module.

BED[1] NEWNURSE

—_—
' [}
i

L]

H alarms>> ———— —>>alarms(1)
! atatu.st:(—\\—)>alarwa{ll]
]]

L]

i

L]

e S \ . !
| <{query[1] |

i

1)

'

3=

b
I

<<{query[H]
H h

L4

b

H history
<<getdata[1]

'
1]
1
)
I
L
(]
'
1
i

<<getdata(i]
]
LoG
change ward;

const scanrt2 = 500;
unlink family k:[1..nbed]
bed[k].alarms from nurse.alarms(k];
nurse.query[k] from bed{k].status;
delete nurse:
remove nurssunit;

use datalogger, enhancednurseunit;
create log:datalogger(scanrt2)
newnourse :enhancednurseunit;

link family k:[1..nbed)
log.getdata(k] to bed[k].status
bed[k].alarms to newnurse.alarms[k];
newnurse.query[k] to bed(k).status;
link newnurse.history to log.history;

Fig. 9 Change Specification

The change aspecification uses the configuration
constructs described previously, but must also
specify the inverse functions. Onlink -
disconnects a module exitport from an entryport. A
named module instance is deleted to remove it from
the system. This can be performed only after all
ports have been unlinked. The remove construct
removes the type from the configuration specifi-
cation, and is valid only after all instances have
been deleted.

A change specifications {3 applied to a system

152

configuration to produce a new system config-
uration. For a static system this implies stopping
the system, rebuilding a new one and reloading the
syastem into the target distributed stations. This
is the approach taken by ADA and CS5P.

Oynamic configuration i3 necessary for applicationa
where it is too costly or unsafe to shut down a
complete distributed system in order to change a
component, A CONIC system allows arbitrary, °
unpredicted modification and extensions to an
existing system without rebuilding the entire
system [Kramer 85]. Changes which can be performed
on a running system include:

Inatallation and removal of module types;
Creation and deletion of module instances;
Changes to the interconnections between modules.

These changes are performed by submitting a change
specification to an on~line configuration mapager
which validates the change and produces a new
System apecification incorporating the changes. It
alsc generates the necessary commands to the
operating system to perform the changes.

Some incremental changea can be performed without

stopping or affecting any parts of the syatem. For

example Lif the 'log' module in fig. 9 were added-
without replacing the 'nurse' module, none of the

other modules would be affected. The additional

links to the 'status' entryports can be performed

without stopping the 'bed' modules, However

installing the 'newnurse' module requires deleting
the old ‘'nurse' module. The 'bed' modules can
continue running but any alarms sent while the

change i3 taking place will be loat. We do not try

to make changes completely transparent. Any

request-reply transaction performed on a deleted

module will fail, There is no automatic saving of
internal state information for a module being
replaced as the old state information may not be

meaningful to the replacement., If the transfer of

state information to a replacement is required,

this wmust be explicitly programmed by saving the

information in a file or to another task.

The change specification is kept as a history of
change and it {s fairly easy to apply the inverse
of the change to go back to the original system,
for example after testing a change on an existing
system.

Logical 1o Phvaical Maoping

The physical topology supported by a Conic system
consists of Local Area Networks (LANs) {inter-
connected by store-and-forward gateways [Sloman
83]. A station can communicate with any other
station, if necessary via a gateway. A variety of
LANs can be used to suit particular application
requirements eg. Ethernet [Xerox B80], Cambridge
Ring ([CR B82], or one of the emerging IEEE LANs
[IEEE 82]. The store-and-forward gateways provide
implementation flexibility at the data-link layer,
allowing the interconpection of LANs of different
tranmmission rates. The topology of interconnected
subnets allows flexible extensions either of
stations within a subnet or of subnets within an
overall network.

The only constraint imposed by the configuration
level on the interconnection of module exitports
and entryports is that they are compatible in terms
of message and transaction type, The 1logical
interconnection is completely independent of the
physical configuration of the hardware components
on which the system is to be run. The same logical
configuration can be mapped onto a single computer,
a closely coupled multi-processor station or
distributed stations connected via an arbi trary
network. It is thus important to separate the

specification of a logical configuration from 1its
mapping onto a physical configuration, This can be
achieved in two ways. If no mapping is specified
in a group module, all module instances within the
group will be created at the same station as the
enclosing module. This is used for small groups of
modules such as the bedmonitor in Pig. 8. Alter-
natively module fnsatance parameters can be used to
define "logical stations"™ at which internal modules
should be create, as shown in fig. 10. The leogical
group configuration of fig. 10a can be mapped onto
two different physical configurations as shown in
figs. 10b & 10c. The at construct can be used to
specify co-location eg. fig. 10a specifies that the
module 'op' 43 to be located at the - the same
station as 'log’'.

group module monitor (stna, stnb : module;
filer : fileays);

use sensor, operator, logger, fileasys;
create sense : sensor at atna;
op : operator at stnb;

log : logger at filer;
link log.write to filer.write;
sense,out to op.in, log.in;
end.

Fig. 10a Logical Configuration

H write write! iin in| !
H ¢ << > |

log op

3ense

-
o
—
2]
3

HOST STATION

system test;
const host = node (1); (host station addreas}
use monitor, Cilesys;
create filer : filesys at host;
mon : monitor (host, host, filer);
end,

Fig. 10b Centralised Allocation

STATION 1 STATION 2

-
[
=
®
L |
-
=]
L

_Agut
]

]
'
I
'

sense
STATION 3

system final;
uss monitor, filesys;
create filer : filesys at pode (1)
mon : monitor (node(2),node(3), filer);
end.

Fig. 10c Distributed Allocaticn

Another use of instance parameters is shown in fig.
10a. An exitport of the module 'log' is linked to
an external module instance 'filer' whose name i3

153

imported by means of an module instance parameter.
Without this, the group monitor would have required
an interface exitport to which 'log.write' was
linked. The 1link from the monitor's interface
exitport to '"filesys.write' would have had to be
performed at a higher level where filer and an
instanee of monitor were created, Importing module
instances allows the strict hierarchy of nested
modules to be bypassed and avoids the need for
"floating" ports to the highest level.

RUN TIME SUPPORT

In this section we describe the run-time support
software that is needed to perform dynamic changes
in a distributed system, CONIC is designed for
embedded applications such as process monitoring
and control, factory autamation ste. In such an
enviroment, sof tware coamponents are not
"malicious™ and should be well tested before being
installed into the system. This means that run-
time wvalidity checks such as access rights or
message type compatibility can be avoided.
Possession of an exitport of the correct type
linked to an entryport gives a capability to access
the service provided via the entryport. All accesa
controls can be in terms of wvisibility of type and
interface definitions, which can be held in a
database and use the standard access control
provided by the database (eg. passwords). ALl
validity checks are then performed at configuration
time, and so entail no run-time overhead. However,
if an wuntyped language or assembler is used for
programming task modules rather than the CONIC
programming language then run time checka will be
needed.

Configuration Manager

An on-line configuration manager 13 needed to
support dynamic reconfiguration of a running
aystem. The configuration manager validates the
change specification and translates it into
commands to the distributed operating system to
execute the reconfiguration operations. The
configuration manager requires information on the
current state of the system (eg. i3 a component
type already in a station or will it have to be
downlcaded?) and =must also have access to
information necessary to perform validity checks.
Some of this information can be obtained by
querying the system to check its current state but
type information is not maintained in stations and
so must be held in an online database. A single
change may result in a number of commands to the
system. For example creating a component inatance
may generate a series of actions to query rescurces
at the target stationm, load the module type and
firally create the instance.

The configuration manager currently being designed
consists of three parts: a database describing the
current system, a specification translator and a
command executor (Fig. 11). The initial version of
the configuration manager will be centralised but
later versions will be decentralised.

The Configuration Database holds task module types
which are the code generated by the module
compiler, as well as a library of definitions
unita, Symbol table and port interconnection
information is held in the form of symbol files. An
up-to-date current system specification is held so
that 1t can be queried at any time and a history of
change i3 maintained in time order. The database
also holds physical configuration information on
the subnets (address, type, stations connected and
current 3tatus) and descriptions of each station
(address, memory, devices connected and software
installed).

Change Specification
it

\

validates change H
saves change spec. {====>! CONFIGURATION

1
{SPECIFICATION TRANSLATOR
] i DATABASE

()
1 1Action List itype definitions
N/ icode files

H isymbol files
{====>|physical config.

COMMAND EXECUTOR H
issue commands H
update database :

I\
| iStatus 0.5. Commands
()

—

]
{
/

-

DISTRIBUTED CONIC
OPERATING SYSTEM
utilities

station executives

Fig. 11 Configuration Manager

The Specification Tranalator validates the change
specification with respect to availability of
resources (eg. memory or I/0 devices) as well as
type and operational compatibility for inter-
connections. It uses the symbol tables in the
database to map the names in the specification into
syatem addresses eg. a port address {3 specified
by "subnet_id.station id.module_id. port_id". The
symbol tables in the database are updated to
reflect the changes. The translator also produces
an action list which Ls a sequence of 3simple
commands to the operating system. These are passed
to the command executor.

The Command Executor performs the operations
specified 1in the action list on the distributed
operating system by means of CONIC communication
primitives. The command executor updates the state
information held in the database to reflect the
changes performed on the system. In order to keep
the system and its apecification consistent, the
system is returned to i{ts original configuration if
anmy commands fail.

The configuration manager is not yet available
although the operating system support for dynamic
configuration has been implemented.

Diatributed Qperating Svatem

The CONIC distriduted coperating system supportsa the
dynamic configuration described above and also
provides intermodule communication, , It conforms o
a layered 3structure where each layer provides
services used by the layer above (fig. 12). The
distributed operating system consists a set of
utilities which are pot replicated in every station
and an executive which is i{n every station.

The wmain influences on the design of the CONIC
distributed operating system [Magee B84] were that
the atation executive should be small and efficient
S0 that dynamic configuration could be provided on
small microprocessor syatems without backing store.
This led to the principle of providing oinimal
functionalf{ty 4in the executive present in every
station and rather implementing as much as possidle
remotely by utility modules. The executive should
{tselfl be configurable 30 that smaller ROM stations
could omit the dynamic configuration support.
This was accomplished by implementing all of the
station operating system components as a set of
CONIC modules which can de configured using the
static coafiguration facilities. The flexibility

154

of the CONIC module structure has been exploited in
allowing distribution of the operating systeam
components.

CONFIGURATION MANAGEMENT

UTILITIES
file server, loader,
device handlers etc.

LOCAL MANAGEMENT

module manager, link manager,
store access, error manager,
file access.

g i w i sipv s ot b
- . —— = P

COMMUNICATION SYSTEM
interstation message tranafer,
routing, data link drivers.

STATION
EXECUTIVE

KERNEL

multi-tasking

local communication
simple interrupt handling
run-time error handling

e i -
B

Fig. 12 Comic Distributed Operating System

Station Execytive

The executive is the set of modules which manage
the resources within a station and implement the
communication primitives described previoualy.
Device drivers are not part of the executive but
are considered application modules. The executive
is implemented in CONIC and so is itself
configurable using the configuration language.

Station kerpel - This consists of the run-time
procedures accessed by task modules and a Kernel
task module, It provides multitasking and the
primitives used by the executive's local management
modules for task executiocn control and port
linkage. It also handles run-time errors and
supports the language extensions to Pascal le.
inter-task message communication within a atation,
timing and input/output primitives,

Communication avatem - This consists of a set of
modules to support inter-atation message tranasfer,
An exitport linked to a remote entryport is
actually linked to a local communication mocule
which formats a message by adding station addresses
etc., and sends the message over the network to the
remote station. At the remote station a communica-
tion @module receives the message, strips off
neaders and then uses standard local Condc
compunication primitives to deliver the message.
The c¢ommunication system thus acts as a surrogate
local source or destination [or remote communica-
tion. The basic communication systeam providas a
datagram service over a single subpnet Dut
configuration options include routing over
interconnected subnets and a rellable wvirtual
circuit service [Sloman 33].

Local mapagement - This is a set of Conmic modules:
modulemapager deals with the loading of task ctypes
and creating <instances; the linkmamager handles
requests to link exitports of task instances within
the station to either local or remote entryports;
storeaccess allows remote reading or writing of
blocks of wmemory and is used for both down-line
loading and resote - debug; errormapager receives
run-time error messages detected by the kernel or
issued by a module and reports them to a Sseiectec

destination; filemamager handles the Pascal File
I/0 requests,

The compiler autamatically generates a number of
standard ports for every task module:

'Config' entryport can be used to detect that
the task is in a quiescent 3tate or to tell the
task to performm tidy-up bYefore a configuration
operation is performed,

'Stdfile, stdread, stdwrite' exitports are used
for standard pascal input/output and are linked
to the filemanager.

'Stderror' exitport is used by the kernel (or by
the task itself) to generate error messages, for
example 1if the taak fails. By default it 1is
linked to the errormanager, but an application
can provide its own error zanager which takes
application specific recovery action when a task
fails.

Lonfiguraticn Operations

The CONIC operating system provides the following
dynamic configuration operations:

Load (stationid, codefile, moduletypeid)

The loader obtains the code 3ize from the code
file and sends a load request containing the
moduletypeid to the target atation. The
station's module manager allocates memory
space for code and returns the start address
of the code segment. The loader forms a load
image and sends load blocks to the station's
storeaccess module.

Unload (stationid, moduletypeid)
The station's module manager deletes the
moduletypeid and deallocates the storage for
the type code., It can only be performed after
all instances of the type have been deleted.

Create (stationid, moduletypeid,
moduleinstanceid, parameterlist)
The station's module manager {3 given an
identifier for the module instance and
instantiation parameter values. The module
manager assigns data segments, initialises
control blocks ete, The module type code must
have already been loaded into the station.

Delete (stationid, moduleinstanceid)
The module manager checks that the module
ports are unlinked and deletes the module
instance from the station.

Link (exitportid, entryportid)

The request to link an exitport to an
entryport is sent to the linkmanager in the
same station as the exitport. The entryportid
is placed in the exitport's data structure (no
information about a 1link is held at the
entryport). A link to a remote entryport is
actually made to the local communication
system,

Unlink (exitportid, entryportid)
The entryport address (s removed fram the
exitport data structure. If a request-reply
transaction is in progress it will fail,

Start (stationid, moduleinstanceid)
The module manager requests the kernel to make
the task module runnable.

Stop (stationid, moduleinstanceid)
The module manager in the target station
requests the kernel to stop the task module.

Operations such as querying the state of tasks in a

155

remote station are accomplished by usihg the store
access module to read the relevant kernel data
structures.

THE CONIC TOOLKIT

The CONIC toolkit for building distributed systems
has been designed for a hosat/target development
enviroment. A host Unix system provides the
program development facilities and can be used for
initial testing of a system. The system can then
be installed onto a target distributed system by
down-line loading, floppy disc or ROM. The on-line
configuration manager performs dynamic changes.

Prozragicg Language Compiler

The Compiler 13 used to compile task modules and
definition units, which may import precompiled
definition unita. The compiler is based on the
Amsterdam Compiler Fit (ACK) [Tanenbaum 83] which
produces an intermediate code called EM. There are
a2 number of back-ends to translate EM to different
machine codes. The ACK Pascal compiler has been
modified for CONIC and to produce a symbol file
This contains information about a task module's
interface (ie. type and address information about
ports and instantiation parameters) and resource
requirements (ie. code, data, stack and heap size).
If the task is compiled with a debug option then
the symbol file also holds information about the
tasks internal global variables etc. The symbol
file is machine independent, but a code file must
be produced for each type of target processor.

Task Module | or Definitions Unit
Source File | Source File
v
i { Definitions Unit
| CONIC e ——— —_——
| Compiler |" Symbol File
1 1
1 : : L}
Relocatable Target | | Symbol File
Machine Code v v
Fig. 13 CONIC Compiler
sfatic Jyatem Builder

The distributed operating system which supports
dynamic configuration consiats of a set of CONIC
modules. A static system builder is needed to
produce a load image of the basic software in each
station in the distributed system. This operating
system 1s itself configurable and static asystems
may omit the dynamic configuration support and only
use the static builder.

Configuration
Specification
1]
v :
! H {Library
| TRANSLATOR |<{-========iof
‘ | |Symbol
|Symbol File |Files
et E
H
e i Target
: i< Station Description
\ CONIC i
| STATION | !
| BUILDER H {Library of
[] i
1 i

{mmeeee===|Code Files
1]
' 1

v
Load Image File
For Each Station

Fig. 1% The CONIC Static System Builder

The astatic system builder conaists of a tranalator
and station builder. The former tranalates system
or group module configuration specifications to
produce a symbol file similar to that produced by
the compiler. The translator valicdates the
configuration specification which includes checking
that module instance parameters are of the correct
type and that exitports are linked to entryports of
the same data and transaction type, The atation
builder uses the descriptor file and a description
of the stations in the system (processor type and
memory size) to produce a load image for each
station.

The builder can also process a change specification
to update a system specification and produce a new
load image for each station ie. the complete system
i3 rebuilt to incorporate the change.

Debug Facilities

T™e station bootstrap program provides the
identical interface to the store access podule
described under local management. If a station
crashes it automatically goes into bootstrap mode
and so the bootstrap program can be used to read
memory blocks for analysis on the host system. Ir
an individual task fails an error message is
automatically generated by the kernmel on the task's
standard error exitport. A core dump can then be
transferred to the host system. If the task was
campiled with a debug option, the postmortem dump
amalyser uses its symbol table to produce state
information about its variables in a readable
format.

A debugger allows a remote module to be tested via
its message pasaing interface or by examining its
memory space. It provides the capability to
construct test messages to send to a module's
entryports and to decode and display messages
received from exitports, It communicates with the
remote station executive to read or write memory
blocks in the test module's memory space. Minimal
functionality is provided by the target station
under test. Instead the complexity of a human
interface can be supported at a development station
or any other suitable station.

lnix Hoat Development Environment

All software development is performed on a host
Unix system and so the compiler and station builder
run under OUnix. This allows access to Unix tools
such as Macro Preproceasocr, Make and Reviasion
Control System.

A single command is used to compile CONIC modules
and build groups or station load images. If Unix
Make files are used to maintain dependency
information then any modified composents are
autcmatically recompiled or rebuilt as necessary.

A loader produces load images for downline loading
to target stations. It relocates code to absolute
memory addresses for processora with no memory
management hardware. The store access module,
described previously, is used to write blockas of
code. All complexity can therefore be in the host
system.

A version of the kernel runs under Unix and allows
a2 set of CONIC tasks to run as a 3single Unix
procsess and communicate by message passing. This
is particularly useful for testing during the
program development phase of a system. The mmber
of CONIC tasks is limited only by available memory
and we have bullt systems of upto to B0 tasks
running as a single Unix process. Only standard
Unix I/0 is supported so CONIC device drivers
cannot be fully tested.

156

Currently only local CONIC communication is
supported within a Unix system but we intend to
allow, remote communication between CONIC tasks
running under Unix and CONIC tasks runnming on
target stations. This allows access to Unix file
systems and peripherals such as printers, [from
remote CONIC stations.

FUTURE WORK

Some 4initial work has been done on incorporating
fault tolerance techniques into a Conic distributed
system [Loques B84], Both hot and cold standby
redundancy can be supported. The configuration
facilities are used to autcmatically switch to a
cold standby module after a failure is detected.
These can be used for applications which can accept
the comparatively short time it takes to link and
start a module. No state information is preserved.
Applications which require completely transparent
failure recovery can include a hot-atandby module.
The active module (performing the function)
tranafers state information at defined pointa
during 4its operation to the passive 'hot-standby'
module. In the case of a failure we autamatically
switch to the passive module and it assumes the
active role. A new hot-standby passive module can
be created. The hot standby approach to fault
tolerance effactively masks module fallures. This
seems appropriate for many real-time applications.
An interesting aspect is that the configuration
manager c¢an itself be made fault tolerant using
these techniques, Additional work is needed to
incorporate the support for fault tolerance of
transactions, such as the provision of atomicity.

CONIC is being used to implement a real-time
database that supporta global or shared data 3such
as plant state information, setpoints, histories or
logs aa distributable data modules, These
complement the CONIC task modules which perform
processing in a real-time system. Data modules
support replication of data for efficiency
purposes, atomic transaction over data in multiple
modules and different views of the data stored in
the database. The database wuses the CONIC
configuration facilities to allow modification
without rebuilding the whaole database
[Andriopoulos B5].

The Conic enviromment currently supports a aingle
module programming language which simplifies scme
of the problems associated with transformation of
information representation for compunication
between non-hamogeneous computers. The port data
structures do not currently hold the type informa-
tion needed for such transformations. We intend to
investigate the problems associated with communica-
tion between both non-homogeneous computers and
different languages. The configuration flexibility
provided by Conic could then be extended to
building distributed systems conaisting of modules
implemented in other procedural languages such as
Ada or C. We also intend to investigate the use of
Prolog as a module programming language. This will
allow an "intelligent knowledge base™ to be
included in a real-time system or CONIC could
provide the modularity framework for building
distributed expert syastems.

We are investigating the provision of aspecifica-
tions for the behaviour of {ndividual task modules
which ocould then be used in composition rules to
specify the composite behaviour of group modules.
A sound, practical approach would provide the basis
for module and system verification. It would allow
amalysis of a configuration specification for
properties such as deadlock and whether ({t
preserves specified constraints. Such specifica-
tions could also be used to predict the effect of
configuration changes on the behaviour of a system.

CONCLUSIONS

A prototype toolkit based on a RT11 host develop-
ment system has been in use for a number of years.
It supports LSI 11 target computers interconnected
by an Cmninet serial bus or Cambridge Ring. We now
have about 4 years experience of using earlier
veraions of the programming and configuration
languages for implementing operating system
utilities, device drivers, communication systems,
and distributed simulations such as a conveyor belt
control asystem, The toolkit has been used by
experienced systems programmers and students for
project work. The prototype software is also being
used by the National Coal Board for inplementing
software for distributed underground monitoring and
control stations, and at Sussex Universi ty for
research into distributed self-tuning controllers
[Gawthrop 84].

Programmers with experience of only ssquential
systems do have some difficulty in adjusting to
designing concurrent systems, However CONIC does
make this slightly easier in that the mmber of new
concepts to be assimilated is comparatively amall
for those with experience in Pascal or a similar
language. The experience of CONIC users has shown
that it provides an extremely simple yet very
flexible approach to structuring a problem as a set
of communicating components. Even comparatively
naive student users have found Conic easy to use
for building both distributed and centralised
concurrent systems. We have found the configuration
independence of CONIC modules has allowed the reuse
of existing modules in many different situations.
This has reduced the effort needed to build new
applications, We have found the nesting of group
modules to be a very useful abstraction mechanism.

The Unix based develomment system i3 far more
powerful than the prototype and yet is much easier
to use, It has only recently been distributed
outside Imperial College, so we have not yet
received reports on user experience. Imperial
College and other educational establishments intend
to use CONIC for student programming exercises in
real-time and communications courses, There has
been considerable interest in the use of CONIC for
a varlety of control and monitoring applications
both in the U.K. and in other countries,

An evaluation system {s available which supports
the programming of CONIC modules and building
groups of modules to run on a PDP 11 or Vax Unix
system. We currently only support LSI 11 target
processors. We hope to support M68000C Unix hosts
and M6B000 targets in the near future. The on-line
configuration manager is not yet available and so
the system currently only supports static building.
However all the run-time support for dynamic
configuration has been implemented in the station
executives and tested via the debugger. The
prototype configuration manager will be implemented
within the host development system and so will be
centralised. We intend to investigate alternative
strategies for distributing the configuration
manager both to improve reliability and to allow
faster configuration changes.

ACENOWLEDGEMENTS

Keven Twidle and Naranker Dulay have contributed
substantially to the concepts described in this
paper and have been responsible for the
implementation of the configuration management and
compilation tools. We gratefully acknowledge the

support of the SERC under grant GR/C/31440 and the
National Coal Board. The views expressed are those
of the authors and not necessarily those of the
NCB.

157

REFERENCES

[Andrews 82] Andrews G, The Distributed Programming
Language SR - Mechanisms, Design and Implemen-

tation. Joftware Practice and Experience, 12,
1982, pp. T19-753.

[Andriopoulos 85] Andriopoulos X., Sloman M. &
database model for distributed real time
Systems. Imperial College Research Report 1985.
(in preparation)

[CR 82] Cambridge Ring B2 Interface Specifications,
SERC, Sep. 1982.

(DOD 80] USA Department of Defence, Reference
Manual for the Ada Programming Language.
Proposed Standard Document, July 1980.

(Dulay 84] Dulay N., Kramer J,, Magee J., Sloman
M., Twidle K. The Conic configuration language:
version 1.3. Imperial College Research Report
DoC 84/20, Nov. 1984,

[Gawthrop B84] Gawthrop P. Implementation of
Distributed Self Tuning Controllers, EURCCON
1984, Brighton.

[Hoare 78] Hoare C. Communicating sequential
processes, CACM, 21:8, Aug. 1978, 666-67T.

[Kramer 83] Kramer J., Magee J., Sloman M., Lister
A. CONIC: an integrated approach to diatributed

computer control systems. IEE Prgoc, Pt., E.,
130:1, Jan. 1983, 1-10.

[Kramer 84] Kramer J., Magee J., Sloman M., Twidle
K., Dulay N. The Conic programming language:
veraion 2.4. 1Imperial College Research Report
DoC B84/19, Oct. 1984,

[Kramer 85] Kramer J., Magee J. Dynamic configu-
ration for distributed systems To be publ. in
JAEEE Trans. Software Epz. 1985.

[Liskov 83] Liskov B., Sheifler R. QOuardians and
actions: linguistic support for robust
distributed programs, ACM TOPLAS, 5:3, July
1983, 381-404.

[Loques BU] Loques-Filho 0., Kramer J, An Approach
to fault tolerant distributed process control
software, TELCON 198%, Greece.

[Magee B84] Magee J. Provision of flexibility in
distributed systems. Imperial College Ph.D.
Thesis, April 1984,

[Sloman 83] Sloman M., Kramer J., Magee J, Twidle
K. A flexible communication system for
distributed computer control. Proc, Sth JIFAC
kHorkahop on DCCS. May 1983, Pergamon Press.

[Tapenbaum 83] Tanenbaum A., van Staveren His
Keizer E., Stevenson J. A practical tool kit for
making portable compilers. CACM. 26:9, Sep.
1983, 65L-662.

[Xerox 80] XEROX Corporation. The ETHERNET: A local
area network, data link and physical layer
specifications, Version 1.0, Sep. 15§80.

[Wegner 84]: Wegner P. (1984). Capital intensive

software technology. IEEE Software, 1:3, July
1984, T-46.

[Wirth 77] Wirth N. Modula: a language for modular
mul tiprogramming. Eragtice ‘and
v Ty 1977, 3-35.

