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1. INTRODUCTION

In this paper we present a distributed algorithm for the allocation of a pool
of R identical resources shared by n > R nodes of a computer network. We
assume that a node uses at most one resource at a time, during a finite but
impredictable interval of time. The algorithm guarantees that the same
resource is never used by two or more nodes simultaneously. It is also free of

deadlock and starvation phenomena.

Each node following the algorithm exchanges messages only with its neigh-
bours in an acyclic graph which covers the network. Therefore the algorithm
requires only a communication schema supporting message-passing primitives
between couples of neighbours in the acyclic graph. However we believe that
this algorithm may be adopted even when a communication schema is available
in which every node is connected with each other, because 1t prevents excessive

resource migration which may result from broadcasting requests.

Up to a significant part this algorithm has been developed using predicate
distribution techniques [C&R82.84]. In fact, the second main purposal of this
paper is to illustrate the usefullness of this technique as a tool for the design of

a class of distributed ‘algorithms.

This paper is organized as follows. In section 2 we make a brief exposition
of the technique of predicate distribution Then we give a specific distribution

for the R-resources problem which 1s results from the application of the general

- -

(3 Tete trabalhc Toi desenvelvido no Universidade de ‘ar is—Suil,
side parcialmentec financizco pela CAPES.

-

Orsay, tendo



104

schema given in [C&R84, CAR85] for the distribution of a predicate following an
acyclic graph. We take as the predicate to be distributed a formal expression of
a resource is never wsed by two or more nodes simuwltaneously . From the dis-
tribution of this predicate results a new version of the initial problem, where the
network integrity is implied by the conjunction of a set of local and global predi-
cates. Each of these global predicates involves variables localized at two neigh-
bour nodes.Furthermore they are of a standard form for which a programming
technique is known (the "acceptance thresholds method”) which guarantees

their invariance by means of a small set of simple rules.

The algorithm is presented in scction 3. It is a solution to the transformed
problem obtained in section 2. In order to arrive to the final program we make
use of standard techniques for deadlock prevention introduced in [LAM78] and

[R&A81].

In section 4 we compare our solution with an analogous algorithm proposed

in [A&&82].

2. DISTRIBUTION OF THE INTEGRITY PREDICATE

The R-resources problem is a member of a class of distributed program-

ming problems which may be stated as follows:

Given a network with n nodes such that at any instant node ¢ (1<i<n) is
at one and only one state belonging to a set E; , construct a system of n

controllers (one for each node ) such that:
- i -
1) a predicate P: x E,»{false true) is kept invariant;
=1

Z) some "additional requirements” are satisfied.
g

The “additional requirements” may include freedom of deadlock and starvation,

-+ -nal performance levels, etc.. During the distribution phase we shall not deal
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directly with these requirements.

For the R-resources problem we may associate to each node ¢ the set

E;={IDLE 1,...,R} which is to be interpreted as follows:
ei=r #IDLE => node i is currently using resource r;
ey=IDLE => no resource is currently being used by node i

Here e; denotes the current state of node ¢ and thus e;€ E;. Predicate P for the

R-resources problem may then be expressed by

P = [ Vi je[l.N] (i#j A ei=e;) => (e‘=ej=IDLE)] (1)

Each controller in a solution to a problem of this class will require a certain

amount of control data. With the distribution of P, as defined bellow, we make a
partial determination of this control data.

In what follows we consider the current state of a node as being composed

(at least) by its “fundamental” state e; plus the current state of the control data

used by its controller.

n
Definition. A distribution of a predicate P:i>_(lEi-»i false true} over an

n-node network is a determination of:

(1) n sets Cy, ... .G, each £ is to be interpreted as a set containing all
possible states of a part of the control data of node i;

(2) n local predicates LP,, ..., LP,; each LP;:E;xXC; » {false true] re-

lates the fundamental and control states of node i:
n

(8) a global predicate GP:_le =+ | false true] , relating the control
i

states of all nodes in the network between themselves,

such that

n
il 1/\“ LPi N\ GP] => P (consistency)
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and

II) Mey.....ep)€P, T(cy,....cp)eEGP

such that (completeness)’
Vi, (eqc;) € LR

Whenever we have a distribution (C,LP,GP) of P we may transform the initial

problem statement into:

Given a network with n nodes such that at any instant node i is at one
and only one state belonging to the set E;xC;, construct a system of n
controllers such that:

(1) the predicate GP is kept invariant;

(2) each controller i will have LP; as a local invariant?;

(3) some "additional requirements"” are satisfied

Consider a solution to the transformed problem The contittrin y property
of the distribution insures that it will also keep P invariant the completeness
property says that it will not forcibly.implement an invariant which is

stronger than P.

The work spent in doing predicate distribution will be wrt hahile  if the
new statement iy more canly solvable. In [C&R84] we propese e nesal schemata
for the distribution or any predicate P following an acyclic jrapdi which covers
the network, 10 such 2 vway that the resulting global predic ate whivh we may
zssumne Lo concentrane the "dificulty” in this class of programaing problems -
1% & conjuncuorn of "bi-local” predicates, cach one refering toodata tn neghbour
nodes 1o the graph In this way the imtial n-node invariance prebdean s decom-

poscd 1nto a collecuion of 2-node 1nvariance problems. Note howewer that we

1 the exgression of the completeness zroperis we ideniifv e oeden eow N lae se et cone
ins e end ony thore elements wach sal s’y thet predicete
We sey thet e pred.cete @ s e lock inverent of conicu en i g (1) @ relersu’y i e sinie o
; <3
node { £0d (2) “he averence of @ does o dezend on node orerac: oo
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are only concerned here with invariance aspects; deadlock and starvation, c8.

will remain global problems even with such a distribution.

Using those schemata one founds directly the distribution for the R-

resources problem that follows.

- Let ¥ denote the set of neighbours of node ¢ in the acyclic graph of the net-
work. For each j€ V] we shall have at node ¢ an array mJ[1..R] of boolean ;
G will be givent by the <rt of possible values for the arrays mi.
The local predicate of node i will be given by

[ Vj€V;, wre[1,R],

LP" =

[ e E T (2)
mi[r] = true => A\
Wk €V, k#j, mf[r] = false

- The global predicate will be given by:

N
6P = A [, GPy]
where

GP; = ‘Pre[LR), [m,f[f] = false => mj[r]= true] (3)
It may be verified that this distribution is consistent and complete.

The local and global predicates given above are better understood when the
variables mJ are interpreted in the following way. Let j be a neighbour of node
¢. We denote by #(j/i) the set of nodes belonging to the maximal connected
component of the nerwork containing j that would result from the rupture of
the i—j connection. Since the network is acyclic, i does not belong to t(j/1).
In the network shown in figure 1 we have,e.g.. 2(4/2) = {456, t(1/2) = II!_. etc.

Using this notation, m{[r ] = false means that no node belonging to t(j /i) may
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be using resource r; otherwise mi[r] = true

To elase this section we remark that effectively the distribution of (1)
mkes the solution of the RF-resourcesproblemeagier. Thisis 8o because we
have decomposed our initial n-node distributed problem into a collection of sub-
problems. Each strictly distributed subproblem is the maintenance of a predi-
cate involving only two neighbour nodes; this invariance may be assured by

the use of the acceptance thresholds method, as we shall see in next section.

3. ALGORITHM

The algorithm is presented in the form of an array
controller R—RESOURCES (/: 1..n)

of controllers which are permanent data structures accessed only through their
public procedures. Except for the waitfor statement, the public procedures of a

controller are executed in a locally indivisible way.

There are two processes at each node. One of them actually uses the
resources, calling cyclically the public procedures REQUEST—RESOURCE and
RELEASE—-RESOURCE. The other process receives the arriving messages and
calls the TREAT-MESSAGE procedure for their treatment.

Each controller keeps some permanent constant data related to the posi-

tion of the associated node in the acyclic graph. The integer J identifies each

Figure 1: An acyclic network




109

controller. The identifications of the neighbours of node 7 are stored in an array
Vi[1].....Vi[v;]: vr is the number of neighbours of node J (Remark that the sub-
script / is implicit in the text of the algorithm). These constants will naturally
differ from node to node; we assume the existence of a protocol that assigns

appropriate values to them.
Permanent data structure of controller / includes the following variables:

"’_:[J][r

- an array my[1..v;,1..R] of boolean ; m;[j 7] corresponds to my ] in the

notation of the last section.

- an array TH;[1..1] of integer; TH[j] is the acceptance threshold (see below)

of node J relative to neighbour V;[7].

- an integer HSN; such that we have always HSN;>max(TH;[1]....,TH;[v;]);
HSNj is also used as a logical clock [LAM78].

- a variable STATE;, which can assume the values "IDLE", "WAITING" or an

integér between 1 and R, with obvious meanings.
- a list RESOURCES; which contains all resources which are available at node J.

Since local invariant (2) is preserved, a resource r belongs to RESOURCES; iff
STATE;#r and m;[j,r] = false for all j in [1,v;].

All messages used in the algorithm have the form:

|
TYPE | SENDER TH m

The meaning of the SENDER field is quite obvious; the TYPE field may assume
values "REQUEST" or "RELEASE". A message of type "REQUEST” is sent by node
I to aneighbour V;[j] when there is at node / a situation of lack of resources.
When there are eneugh resources to satisfy node 7 itself and also the REQUEST's

of the other neignbours which have already arrived to node /, a type "RELEASE"
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message may be sent to node V;[j]. Fields TH and m are used as specified by

rule 2 below.

Consider now the following set of programming rules, which have been used
by the autbor during the design of the solution proposed here. They constitute a
“translation” of the acceptance thresholds method [C&R82,83,84]; their obser-

vance leads to algorithms which are guaranteed to keep predicates (3) invariant.

Rule 1.

all the TH variables are monotonically increasing integers:

Rule 2
when node / sends a message o of either type to neighbour ¥;[j], the field
a.TH will contain the value of TH;[j] at the sending instant, and o.m will

contain the value of the row my[j,1].....m;[j,R] at the sending instant;

Rule 3.
at any instant the value of TH;[j] must be greater than or equal to the
maximal 7H field present at any message sent to or received from ¥[j] up

to that instant;

Rule -
for any resource r, any event at node / where the value of m;[j.»] passes
from true to false must be deflagrated by the arrival of 2 message p, com-
ing from ¥[j]. such that at the arrival instant (i.e.,, before that any

modification could be produced by this event):
p.TH > TE;[jl or (p.TH = TH;[j] A V[j]> 7). and
p.m|r] = true and my[j r] = true
These are indeed practical rules because they are simple enough both to permit

an easy verification of their observance by means of an inspection of the text of *

the algorithm, and also to be kept consciously in mind during the design of the
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algorithm.

For a complete verificatisn of the invariance of (1), it is also necessary to
show that the execution of any procedure of controller / keeps invariant the
local predicates (2). But this can also be done through an inspection of the text
of the algorithm, which has been constructed in such a way that this invariance

does not depend on any interaction with the other nodes.

More permanent variables are included in the data structure of controller

I

- an ordered list REQUESTING;, which contains all requesting neighbours of
node J. This list is ordered by the TH field of the REQUEST message used to
communicate to node J this request situation,

- an array REP—-EXPy[1..v/] of boolean ; REP—EXP;[j] = true if node [ has sent
a REQUEST message to Vj[7] which has not been replyed.

Full details and additional data structures may be seen directly in the algo-

rithm.

controller R-RESOURCES[1..N];
(1 1..R}."IDLE"."WA]TING"B: STATE initial ("IDLE");

constant integer R, v, V[1..v}];
boolean m‘l..v.l..R]; /* see note on initialization */
integer TH|1..v] initial (0),
HSN initial (0),
SNDR initial (D), /* SNDR is used to prevent backward propaga-

tion of requests */
HRSN[1..v] initial (0); /* Highest Received Sequence Number */
list RESOURCES of ( integere;
ordered list REQUESTING of ( integer, key integer);
/* see note on initialization */
boolean REP-EXP[1..v] initial (false);
type £ = record ( ("REQUEST","RELFASE"): TYPE;
integer SENDER, TH;
boolean m[1..R] );




Communication medium. We assume an underlying communication medium

which delivers correct messages in a finite but arbitrarily long delay, at an order

which may differ from the order in which the messages are sent.

public procedure
REQUEST-RESOURCE( integer: RES):

STATE:= "WAITING"; NORMALIZE;
waitfor (1 < STATE < R); RES:= STATE
end REQUEST-RESOURCE.

public procedure

RELEASE-RESOURCE( integer : RES):
in
put(STATE . RESOURCES); STATE:= “IDLE"; RES:= 0
NORMALIZE

end RELEASE-RESOURCE.

public procedure TREAT-MESSAGE(Z: p):
begin integeri,j.r;
j:= "1 such that V[i] = p.SENDER";
if p.TH > TH[j] or (p.TH = THJj] and p.SENDER > I)
then /* consider the m field of the message */
TH[j}:= p.TH: HSN:= max(HSN,p.TH):
HRSN[j]:= p.TH;
forr:=1 until R do
if p.m[r] = m[j.r] = true
then m|j.r]:= false; put{r, RESOURCES);
REP-EXP[j]:= false
fi

od;

if p.-TYPE = “RELEASE"

then delete (j,REQUESTING) fi
fi;
if p. TYPE = "REQUEST"” and p.TH > HRSN[}j]
then insert (j,0.TH.REQUESTING): SNDR:= j; HRSN[j):= p.TH
ﬁ.

NORMALIZE
/* the insert operation deletes older (with less valued TH) request’s of node
).if any */

end TREAT-MESSAGE.
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procedure NORMALIZE:
begin integer r k;
HSN:= HSN + 1;
if STATE = "WAITING" and #(RESOURCES) > 0
then get{STATE,RESOURCES)
fi;

if # REQUESTING) > #(RESOURCES) or STATE = "WAITING"
then while #(RESOURCES; > 0 do
get(r,RESOURCES): get(k,REQUESTINGB;
m(k,r] := true; REP-EXP(k]:= true; TH[k]:= HSN;
send Z("REQUEST", 1, HSN,m[k..]) to V[k]

for k:=1 step 1 until v do &
if REP-EXP[k] = false and k # SNDR and Y, (m[k.r]) = true
then REP-EXP[k]:= true;
TH[j]:= HSN;
send £("REQUEST",1, HSN,m[k,.]) to V[K]

od
else while #(REQUESTING) > 0 do
get{r, RESOURCES); get(k.REQUESTING):
REP-EXP(k]:= false; m[k.r]:= true; TH[j]:= HSN;
send £("RELEASE" L HSN. m[k..]) to V[K]

od
fir
SNDR:= 0
/* #(listﬁ wes the number of elements in list */
/* m[k,.] denotes the row m[k,1)....m[k.r] */
end NORMALIZE.

end R-RESOURCES.

Initialization. There are many correct starting points for this alporithm; we
suggest the following one. For initialization purposes only, each node has desig-
nated aispecial oge, aong its neighbours ;[ FATHER, ], which is his father with

respect to the tree rooted in node 1. Naturally any other node could scrve as

well.

Every node I #1 should then be initiahized with
my[j.r] ="false Vj # FATHER;, V'r € (1.2 and with
my[FATHER; v ] = true Ywr Node ] must  be  intialized  with

mylj.r] =Tfalse Wj, vr Con;‘lstcﬁtly we must* have the list RESOURCES,
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initially empty for every node, except for node 1 which has initially all R
resources in its list RESOURCES,. Without exceptions the list REQUESTING
should be initially empty for all nodes:

Abgenee of deadlock and starvation. It can be verified that this algorithm is
free of deadlock and of starvation phenomena. By lack of space we shall omit
the proof, which relies basically on the guaranties given by the communication
medium for message delivering, on the monotonically increasing character of

the acceptance thresholds and logical clocks, and also on the fair policy of the

REQUESTING queue.

3.1. Example.

We show in figure 2 two examples of the use of algorithm R-RESOURCES for
the allocation of two identical resources A and B, shared by the nodes of the net-
work in figure 1. We use a graphical schema where associated to each node
there is a vertical "time" line, representing successive values (growing down-

wards) of a global discrete clock.

Simultaneous events (on different nodes) are allowed. This does not means
that simultaneity may be enforced by suitable programming. On the contrary,
whenever the schema shows two simultaneous events, it means that. we cannot
infer from an examination of the code of the algorithm which event will precede
the other. In other words, whenever an algorithm admits a computation where
two events arrive at the same discrete instant, it will also admit at least two
other computations, both with the same previous history, but each one with a

different order of arrival of those events.

An event at nodc‘_i is represented by one of the following symbols, which are
placed over the time line of node i in a position that corresponds to their

instant of arrival. A REQUEST-RESOURCE operation is represented by "

Qe ).



(a) A computation (b) Another computation

Figure 2: Allocation of resources 4 and B

RELEASE operation by EE and a TREAT-MESSAGE operation by @ The

integer placed ins:de the operation symbols gives the value of the variable HSN;
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immediately after the execution of the corresponding procedure.

A message sent by node ¢ to node j is represented by an oriented segment
linking time lines ¢ and j. Its origin at line i gives the value of the logical clock
of node 4 at its sending event, and consequently it gives also the value of the TH
field carried by the message. Dashed and full segments represent respectively
type "RELEASE" and type "REQUEST” messages. The value of the m field carried

by a message is indicated through the following convention:

a mark "r" is placed over the segment representing a mnessdage
iff
the field m[r] carried by the message equals true.

A
Thus ---> represents a "RELEASE" message for which m[A] = true and

AB
m|[B] = false, while ——> represents a "REQUEST' message for which

m[A] = m[B] = true.

4. COMMENTS.

To the author’s knowledge the only previously published distributed solu-
tion for the R-resources problem which does not use a single central allecator is
proposed in [A&&82), where it is called the "free servers” problem. Ye think
that our solution compares favourably with that one in the following poinzs.
Requirements on the wunderlying communication medium. The solution
presented in [A&&82] requires a communication medium providing for complete
network interconnection. In our solution only nodes that are neighbou-s in an
acyclic graph must be connected. Furthermore algorithm R-RESOURCES is
resistant to inversions in the order in which the messages are delivered
Symmnietry. All controllers in the F-RESOURCES zalgorithm are textually identr-
cal. There is no need to distinguish between "client” and "allocator” noces, as 1s

the case in [A&&82]. However actual behaviour of each controller will azpend on
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its position in the graph: the more “central” a node is, the more its behaviour
will present an allocator character; the more external a node is, the more its
behaviour will present a client character.

Performance (with high demand rates). Both message traflic and waiting time
are not bounded in [A&&82] when the resources load factor approaches 1. Even
with relatively low demand rates it is always possible to imagine a conspiration
that leads a node to starvation when using [A&&82]. The solution we give here is

free of these inconvenients.

It is out of the scope of this paper to make a more complete analysis of the
performance of the R-RESOURCES algorithm. Also we have not examined which

modifications are needed to make it resistant to failures.

To terminate we would like to remark that, from our point of view, the
strongest quality of this algorithm is the sound basis over which relies (partially)
its correctness. Over these same basis other algorithms can be constructed,
implementing other allocation policies. perhaps with better performances. Most
important, these basis have been obtained through a systematic development of

the initial statement of the A-resources problem.
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