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Resumo

Este trabalho demonstra o uso de linguagens de programagao puramente funcionais,
de alta ordem, na especificagao de redes de computadores e seus protocolos. Como exem-
plo desta aplicagdo, nés especificamos um “Cambridge Ring” ¢ um de seus protocolos,
e indicamos como tal especificagio pode ser usada para provar propriedades da rede, €
também como um simulador da mesma.

Abstract

We consider the specification of cornputer networks and protocols vsing higher-order,
purely functional programming langsages. As an example of such application, we specify
a basic Cambridge Ring and one of its protocols, and indicate how that specification could
be used to prove properties of the system, and also how to modify it te be a simulator of

the network.
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1. Applicative Languages.

For some time now, we are experiencing what is commonly know as the “software
crisis”. This has to do with the ever increasing cost of software, together with the ever
decreasing cost of hardware. Applicative programming languages have been heralded as
offering a solution to the problems that cause the software crisis to exist, but that is not
the whole truth.

The software crisis is not a problem caused by lacking of good theories and practices
of running software projects only. It exists basically because the programming languages
used in those projects are not appropriate for doing so. They are (normally) not modular,
they haveside-effects and other sorts of dirty tricks, and they do not posses the necessary
abstraction mechanisms to think about the problem being solved, instead of the imple-
mentation details of the solution. These are just a few problems we can name here and
now.

The current aim of the class of languages we use in this paper is not to solve the
software crisis once and for all, but at least a great part of it related to the project’s
programming language per se.

In this paper, we will use a “style” of programming that resembles the languages
KRC and MIRANDA [Tur82k, Tur84m|, developed by Professor David Turner of the
University of Kent at Canterbury, UK. MIRANDA is the latest in a family of purely
functional languages developed at Kent, and it incorporates such concepis as modules,
algebraic types, abstract data types and separate compilation. We do not make use of
the MIRANDA itself in this paper, using the “style” of programming encouraged by the
language, the point being not to clutter the presentation with language details unnecessary
to our objective in this paper.

The point of using this style of programming here is to try and show that functional
languages are general programming languages, and not just another theoretical toy. They
have been used in situations as far apart as interpreters, compilers, editors and program-
ming proving tools. Network and protocol specification is just another application, where
we can put to good use the executable specification concept |Tur84m|, so that we can go
from a prototype to a runnable simulator in a period of time far smaller than it could be
achieved by using other means.

The language used here does not intend to be as abstract an specification tool as the
ones normally used for such job, but on the other hand it offers the capability of the user
being able to run her “specification” at various levels of definedness.

A word of warning is that, from a purely functional point of view, the world must be

reated as if all processes were functions. We skip the question of whether the universe
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is functional or not, which is not proper in this forum. However, we must say that some
readers might find that their normal view of communicating processes might be in just a
little conflict with the views presented in this work. Furthermore, we consider our view as
an exercise only,and not as the final —or only- truth about the matter.

2. The Cambridge Ring.

The Cambridge Ring is a local area network developed at the Universityof Cambridge
Computer Laboratory, in the late 70's, and it has been widely used both as research
instrument and in practical applications since then.

Hosts are connected to the ring via a station and repeater setup, where the repeater
generates the ring signals and allows the stations to alter the data flowing through the
ring. At the physical level* the ring works on the empty slot principle. A slot is a group
of 38 bits, with the format shown below:

|1lelm| dest | sour | data | data |resp|p |

where the first bit, always set to 1, is the start bit, the next is the full/empty bit, and
the third is the monitor bit. After that, there are 8 bits in each of the dest(ination) and
sour(ce) fields, and also in the two data fields. The resp(onse) field of the packet has two
bits, and the last bit, p(arity), carries the parity information for the packet.

There is a fixed number of slots circulating around the ring. Stations that want to
make a transmission wait for an empty slot to arrive, mark it full and set the address and
data fields. The slot circulates to its destination (if it exists) which accepts the data or
not, and marks the response bits accordingly. The slot then circulatesto the sender, which
marks the slot as empty and reads the response bits.

The ring stations havea selection register, which tunes the station to particularsources
or none. A station may listen to all stations by writing 255 in its selection register, or
listen to no stations by writing 0.

Using the two response bits in the slot, the four possible responses are:

ignored: no station with the destinadion address is active;
busy: the host attached to the destination station hasn't yet read the last slot from
the station;
unselected: the destination station did not receivefrom the source;
accepted: the destination stattion received the packet.

* This terminology is used by the Cambridge group, and it is not necessarily the same
as ISO’s OSI level 1, i.e., the OSI physical level.
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The monitor and parity bits are used to detect error conditions: the first allows the
monitor, which is a special station, to detect when a transmitterfails to empty a returning
slot. The second can be used to determine the links of the ring on which transmission
€rror are occurring.

At the higher level some of protocols used are the Basic Block Protocol (BBP), Byte
Stream Protocol (BSP) and Single Shot Protocol (SSP), which are described in the ring
literature (see [NeH82}).

3. Specifying a Ring.

Our first approach to the specification of a Cambridge Ring is to write, for a generic
station, a definition that specifies the behaviour of that station.

A Cambridge Ring node can be described via its attributesand behaviour,and a node
may comprise several levels, each of which corresponding to virtual or physical levels, in
OSI nomenclature. To start with the simplest possibility, let us write the specification of
a “bare” ring with three stations, at physical levelonly. In a real situation, of course, one
of the three would be the monitor, but we do not worry about that at this stage.

The simplest specification we could possibly write is a set of mutually recursive defi-
nitions, using a function definition for each station. Noting that [] is the empty list, and
that : is the same as the cons constructor of LISP, that works out as

stal [] =[]
stal (a:x) = sta2 x
sta2 [] =[]
sta?2 (a:x) = stad x
sta3 [] = []
sta3 (a:%) = stal x

At this level of specification, the list represents the traffic in the channel, each of the list
elements is a slot and every station “receives” a slot every time the slot is passing by.
Still using the same idea, a better specification is to use a single definition of type

ring :: [station] -> [slot] -> null

where :: means “is of type”, [x] is “list of elements of type x" and null is the null type.
Now, a single definition can be made to care for all the stations in the ring, written as

(]
ring (x ++ [a]) y

ring (a:x) []
ring (a:x) (b:y)

1 1]
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where the stations are simulated by the first parameter (a list of stations), from which we
take the head and always append (++) it to the tail. This specification copes even with a
single station ring!

In this basic specification, though, all we have described is the “idea” of the ring, i.e.,
that stations process information in a “ring” fashion. Now we need to materialize such
concepts as slots, the station states, addressing modes, etc.

If in the preceding specification a station is given by its name only, we now give its
specification as a tuple of objects, which includes its name, as

station == (mad, lad, status)

where == makes station a “typesynonym” of the tuple to the right of the sign, which can
be used as records in Pascal, mad and lad are the station’s own address and the listening
address, respectively,and status is the current (unspecified) status of the station. At the
same time, consider a ring slot defined by

slot == (start, $$ 1 bit, always set to 1
enpty, $8 1 bit, true if the slot is empty
monit, $¢ 1 bit, the monitor station mark bit
dest , $¢ 8 bits, the destination station
sour , $$ 8 bits, the transmitter station
data |, $$ 16 bits, data
resp , $¢ 2 bits, response, see Section 2
par $8 1 bit, parity
)

where everythingafter $§ is a commentand we omit the full definition of all the data types
involved. For our purposes now, it is enough to know their intended meanings.
Next, we retype definition of ring to

ring :: [station] -> slot -> null

where we now use the one slot per ring configuration, as it can be seen. But note that, as
[station] 1sonly a list of attributes of ring stations, it is not easy to see how the stations
could interact over the ring. In order to to just that, first we add to station a new item,
which will be called traffic, and here we assume its type to be

traffic :: [slot]
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without loss of generality to avord having to specdy packet assemblingand desassembling.
As of now, we are also abstracting the exustence of higher levels of hardware and protocols,
to simplify the development

Before we go on 1o the neat set of cqunations, if 19 necessary to say that so far we have
been writing unconditional equations, or conditonal equations using pattern matching
(see, for example, stall. We can also write “gnarded equations”, where we state, as if we
had an “if", the conditions under which the preceding expression is to be evaluated. This
can be better examplificd in the definition of the factorial function

]

factorial n = n * factorial (n-1), n "= 0

=1

where * and © mean times and not. respectively, which has the same meaning as

factarial ¢ 1
factorial n = n * factarial (n-1).

Having said so, our specification is still yelding the object of the null type as final
result, and we can rewrite the definition of ring to be

$$ st:1sst is a pattern matcher for the list of stations,

$$ there is only one slot and

$$ the attributes of slot and st are accessed in the

$$ usual Pascal dot notation

ring (st:1sst) slot = ring newstlist slot,

slot .empty & st.traffic = [] \/

“slot.empty & “matchadd slot st

ring newstlist (hd st.traffic),

slot.empty & st.traffic “= []

ring newstlist (busy slot),

“slot.empty & matchadd slot st & st.busy

ring newstlist (empty slot),

“slot.empty & (matchdadd slot st \/
slot.sad = st.name)

ring newstlist (deaf slot),

“slot.empty & matchadd slot st

WHERE

newstlist = last ++ [at]

n
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with \/ and & as or and and, respectively.
From the first line, the function matchadd is defined by

matchadd slot station
= TRUE, (station.lad = 266 \/ station.lad = slot.dest) &
(slot.dest = 266 \/ slot.dest = station.mad)
= FALSE,

and the “slot filling” function busy is defined by

busy alot = (slst, slem, slmo, slde, slso, slda, BUSY,
parity [slst, slem, slmo, slde, slso, slda,BUSY])
WHERE
slst = slot.start
slem = slot.empty
slmo = slot.monit
slde = slot.dest
slso = slot.sour
slda = slot.data

1]

where BUSY is the code for the busy answer in the packet, and parity a function that
computes the parity of the packet. The remaining functions, empty and deaf, are defined
in the same way.

Now we have a basic “working” specification. Just follow the lines in its definition and
you could see what it does. The ring is “simulated” by appending the current station to
the list of stations, such that the slot transmitted by the current station will be processed
by the “next station”, in a circular fashion until we {i.e. the slot) come back to the current
station.

From this specification, for example, we can already prove that no station can hold
on to the slot, indefinitely, for any reason. This follows trivially from the fourth equation:
a station, on receiving a full slot, or removing one of its own, which has circulated all the
way around and was not removed, sends an empty slot. That means that stations can’t
immediately re-use the ring, ard “hogging” is avoided by this very simple mechanism.

Note that a a-slot ring follows trivially follows from the definitions above, since we
can redefine ring to have type

ring :: [station] -> count -> [slot] -> null
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where count is a counter of the number of slots processed, and all the stations would be
redefined accordingly. For example, the first equation of ring, for a ring with three slots,
would now be

ring (st:1sst) 3 (sl:1ssl) = ring (lsst ++ [st]) O (sl:lssl)

without any other conditions (the condition on the equation above is count = 3). This
equation would come before the already defined equations for ring. The action of the
right hand side is simply to put the current station at the end of the list of stations,
thus handing control over to the next station down the ring. The fourth equation on our
previous definition of ring can now be rewritten as

ring (st:lsst) n (sl:lssl)
= ring (st:1lsst) (n+1) (lssl ++ [empty sl]), ...

with the same guard as before. Note the incrementing of n, the slot counter.

From this basic specification, we can go on to more and more complete descriptions
of the Cambridge Ring, until we have a full working simulator. To our current version,
we need adding the monitor station, which controls the flow of transmission and processes
the response bits in the slots.

Adding a monitorstation needs changing the definition of station, with the addition,
to its specification, of a further field, which we call monitor. If we have monitor = IRUE,
the station i3 a monitor, and it takes charge of maintaining the ring operational, from
the point of view of flow of information. To see why we need a monitor station, and
with the attributes we are going to give it, imagine the following situation: station a has
sent a message to station b, which is not operational. Just after that, station a becomes
not operational. Then, we now have a circulating glot whose sending and destination
addresses do not correspond to any station in the ring. That means that if we do not have
a priviledged station that has the power to remove such slots, either that slot is lost (if
the ring has more than one), or the ring is deadlocked. The situation is the same in any
case, since in a multi-slot ring, lots of lost slots will cause a deadlock, given time.

Let us remind the reader that the slot has a monitor bit and an empty bit, as well
as two response bits. When inserting its message into a slot, a station marks the slot as
full and clears the monitor and response bits. When that full slot gets to the monitor
station —if at all- it marks the slot as “monitored”, by setting the monitor bit. Then, if
the slot comes back to the monitor station marked hoth as full and monitored, this is so
because no station -including the sending station- could remove it from the ring. In this
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case, the monitor station will mark the slot as empty and not monitored. That will avoid
deadlocks, as far as there i8 a monitor station operational.

Back to our specification, adding a monitor station means changing the definition of
station fo |

gtation == (mad, lad, status, traffic, monitor)

and the specification of ring to (for a one-slot ring)

n

ring (st:1sst) slot = ring (lsst ++ [st]) (empty slot),
at.monitor & “slot.empty & slot.monitor
ring (lsst ++ [st]) (monitor slot),

st .monitor & “slot.empty & “slot.monitor

besides the equations already given.

As the specification is written now, we could use it as a simulator, and all stations
would use the ring in a daisy-chain, because there is no way to specify random arrival of
messages to be transmitted at each station. This is not a deep functional programming
problem, and one possible solution is shown in [Mei86r|. By using a distribution for each
station, we could simulate the need for transmission in time.

A further problem is the specification and simulation of the several levels that make
the network up. As we do not have side-effects in functional languages, we cannot “pass”
a message from one level to another in the usual way. In this case, we can make good use
of the higher order function concept of languages such as KRC and MIRANDA and use
it, together with tuples, to specify the various levels that interact over the network. Let
us call ring the specification of the physical level itself, and bbp the the specification of
the basic block protocol that runs on top of the ring packets. The “bbp station” also has
a status, traffic, address control, etc., but we are not to incur in the details here. We just
intend to show a possible way of specifying and /or simulating the two levels above, in a
way that could be surely extended to the specification of a n-level system.

First of all, we redefine ring to be of type

ring :: stbbpslot -> stbbpslot
with stbbpalot being of type
stbbpslot == (stationlist, bbplist, slot)

with ring having its usual functions plus passing and receiving information to/from the
next level up. The rewriting needed is not difficult and is left to the interested reader.
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Then we need to write a driver function, which will referee the cooperation of the two
levels. We call this function canbridge and define it by

cambridge [f, g] stbbpslot = cambridge [g, f] (f stbbpalot)
which, when called as
cambridge [ring, bbp] stbbpslot

applies ring and then bbp, in a circular way, to the triple stbbpslot, ad aeternum.

To use this specification as a simulator, all that 13 needed is to set some conditions
under which the simulation terminates, and to process the information gathered during
the simulation to produce the statistics of the run.

4. Conclusions.

We have shown how to use purely applicative programming languages to construct
specifications and simulators of networks and protocols. Although the research that origi-
nated this paper isstill in a very early stage, we are led to believe that functional program-
ming languages such as KRC and MIRANDA, who originated the style of programming
used in this paper, are very useful tools in this area.

To assert this in its fullness, we need building a larger specification, coupled with its
simulator. An ACK/NACK protocol gpecification has been written already, and used in
practice to simulate that protocol over a channel with the characteristic of an HF radio
link. The full specification of a Cambridge Ring and its protocols is now on its way.
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