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ABSTRACT

The average behavior of graph algorithms can often be analyzed by studying the
expected structure of random graphs over a suitable sample space. Since the
analysis considers ''events' distributed throughout the graph, it can provide

the basis for designing and analyzing algorithms which are similarly distributed.
As such, results about random graphs have special relevence to modelling
computation in distributed networks.

In this paper we prove some probabilistic results about shortest edges which are
related to shortest paths and spanning trees. With this as a vehicle, we

illustrate the connection between random graphs and distributed computing.
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INTRODUCT 10N

This paper is organized as follows: in section A we define the concept of
random graphs and sketch the history of research about them; section B considers
the application of results about of random graphs to graph algorithms; sections
C and D develope specific results concerning the distribution of shortest edges
in a random graph and their relation to minimal spanning trees; and section E
relates these results to algorithms and distributed computing and poses

problems for future research.

Throughout our discussion we will consider underected graphs with labeled

vertices and without loops or multiple edges. Notation will follow standard
practice, any exceptions being explicitly defined.

A. Random Graphs

We begin by introducing the concept of random graphs and their structure.

Let S be a collection of graphs and C some graph property of interest. If we

can show that a randomly selected member G has property C with probability P,
then we know something about the structure of a random graph (in S). 1n
particular,if S is infinite and its members can be subdivided into classes 5;

of graphs having i vertices, then we may be able to reveal the expected structure
of sufficiently large graphs in S by proving results of the form

lim Prob { G ¢ S, has property C } = P.

LB ]
A classical example is: C is the property of connectivity and Sh consists of
graphs with n vertives and n/2(logn + c) edges. In this case it is known that
P = exp(-e) °.

At this point we note in passing that this suggests a general approach to graph
algorithms with improved average behavior: design algorithms to behave optimally
for the most probable structure of the input and to work reasonably for the
worst case. An early example of this approach is outlined in Krieger (13).

Clearly, then, to exploit the expected structure we must identify both the
properties of interest and the appropriate classes of graphs over which to
average.

The following three examples will illustrate some important models of random
graphs and at the same time highlight developments in this area.
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1. Classical Model

As an integrated body of results, the theory of random graphs begins with the
seminal papers of Erdos and Renyi (4, 5 and 6). They considered the following
model: let Sn,p be the class of graphs with n vertices and p = p(n) edges; then
the random graph Gp is said to (not) have property C if

lim Prob { G e S_ > has property C } = 1 (= 0,resp) (1).

n-+o :

We will denote this limiting probability by P(p, C).

Generally Erdos and Renyi were concerned with properties of connectivity and
the existence of certain subgraphs (e.g., trees and cycles of specified size),

for which they proved many results considerably more refined than (1).

In particular, they sought 'threshhold" functions for each property: p(x) is a

threshhold for property C if whenever lim (f(x)/p(x) = « and lim g(x)/p(x) = 0,
X+ > K-+

then P(f,C) =1 and P(g,C) =0.

Surprisingly, it was found that numerous graph properties indeed exhibit sharp
threshholds.

It is convenient to think of these results as saying that almost all sufficiently
large graphs with edge density greater than p(n)/(3) have property C. Intuitively
the class of graphs consists of those with average vertex degress 2p(n)/n. Thus,
if we think of the existence of each property as depending on the edge density,
we can observe the "evolution of a random graph' by letting p(n) become an ever
faster growing function.

For many years after the initial works, relatively little appeared about the
structure of random graphs. In the last few years, however, a host of new
papers have appeared. This renewed activity almost surely derives from stimulus
in the mid 70's of algorithmic applications of random graphs (see section B,
below) and several new structural results, principally that of Posa(16). Leuker
(15) includes a reasonably comprehensive biblicgraphy.

152



2. Geometric Models

In networks and other applications of graphs, the relative position of nodes
is relevent and so the distance (or cost) of an edge between two nodes plays a
role. It may be the case, as in packet radio, that two nodes are connected if

they are within a certain distance.

More specifically we define a sample space as follows: let R be some region
(e.g. the unit square or the Euclidean plane) on which points (nodes) are
distributed by a Poisson process of fixed density; two nodes v and w are
connected by an edge whenever d(v,w) < r, a given radius of connection; we are
interested in the expected structure of graphs formed this way. Since r
parameterizes the edge density of the graphs, we can again ask about the

probability of some property as a function of r for sufficiently large graphs.

In the most general setting, such questions fall within the difficult area of
stochostic geometry. Specific questions involving connectivity and Euclidean
distance were long ago considered as models for epidemics and other biological
problems (see, for example, Gilbert (8)). Results paralleling the classical
models have been elusive; a few are presented in De Witt and Krieger (2);

De Witt (1) surveys the history in some detail and makes a significant

start toward a Euclidean theory.

3. Fixed degree model

Let n labeled vertices and some number s be given. We form a (directed) graph

by letting each vertex choose 3 neighbors at random. The space of all (";‘]n
possible graphs thus formed is D(n,s). A space UD(n,8) of undirected graphs

may be formed by ignoring direction and assigning to G € UD(n,8) the sum of

the probabilities of graphs G' € D(n,8) which yielded G. Shamir and Upfal

have recently proposed this model, considering asymtotically the relation between

and the existence of 1- factors (17).

In many real network situations, this model may be more appropriate than that
of Erdos and Renyi since it prevents the occurance of isolated vertices. Note

that UD(n,8) is .not a subspace of some S, , since members of Ub(n,s8) do not all

P
have the some number of edges. For example, members of UD(n,1) may have as few

as n/2 or as many as n edges.
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B. Algorithms and Random Graphs

As alluded to in the the previous section, by exploiting the most probable
structure of graphs, algorithms can be expected to achieve much improved average
performance. For this reason, one might have expectéd the results Erdos and
Renyi (5) to have been seized upon by algorithmic analysts. In fact they were
ignored for almost a decade and a half. This situation has a two-fold

explanation.

First, algorithmic analysis - especially in probabilistic terms - only came into
its own in the early seventies under the influence of Knuth(11) and the Cook/Karp
results (9). Furthermore, the earlier approach to average analysis principally
arose in the context of sorting where the analysis focused on familiar

combinatorial properties of permutations and other linear objects.

Secondly, the work of Erdos and Renyi was little known beyond the circle of pure
combinatorialists, most of whom had little interest in computing until recently.
Moreover, the computer scientest who stumbled upon those early papers would

almost surely have found them forboding,and turned away.

Perhaps the earliest computer reference to the possibility of using the ER work
was that in Frank and Frisch (7). Actual algorithmic use of random graph results
first appeared in Krieger (12) and Karp(10), the latter surveying a variety of
problems. The application in(12) provides a convenient illustration. As noted
earlier, a graph with average degree logn+ c is connected with probability

exp (-e"€). This implies that a random graph with n-log n edges is almost

surely connected. From this, it follows that the shortest n-log n edges of a
graph contain an MST. Thus, by modifying the standard MST algorithms to focus

on the smallest n-log n edges, fast expected time algorithms were achieved.

In a similar vein, improvements have been made for a variety of problems,

including shortest paths, colorings, and Hamiltonian path (see references in(15)).

For shortest path and MST problems, short (least cost) edges play a critical
algorithmic role. To that end, we analyze their structure in the following
sections.
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C. The Local Structure of Ordered Graphs

Let G be a complete graph with randomly assigned edge weights and
distinguishable vertices 1,2,..., n . Since we are only concerned with
relative order of the edges, we may take these weights to be the integers
1,2,...,t where we define t = n(n-1)/2 for convenience. The weight or cost
of an edge e = (v,w) will be devoted by c(e) or c(v,w). While our ultimate
concern is with properties of undirected graphs, it is convenient to treat

edges as directed as follows.

Def: An edge (v,w) of G is of type (i:j) if i < j and the edge is the e
smallest from vertex v and jth smallest from w. Such an edge is said to be
on rank i with respect to v and rank j with respect tow. If i<j,

then e = (v,w) is directed from v (the head) to w (the tail) and vice
versa if i>J; when i = j,e is bidirectional. By NV(v) we

denote the vertex nearest to v, i.e., that vertex w minimizing c(v,w).
NE(v) denotes the edge N(v,NV(w)). Note that NE(v) is of type (1:j).
The notations NV-and NE obviously can be extended when v is replaced by

a set of points to denote the vertex and edge closest to some member of

the set. S, consists of the set of all (k:j) edges, 1 < j < n-1.

Let l-'k be the set of edges of type (k:j) where k is fixed and

k < j < n-1. An edge on Fi is called a k-edge. Dk denotes the set of
(k:k) edges.

We would like to compute P; i the probability that (v,w) is of
type (i:j) as well as the expected size of Fy over all assignments of

1,2,...,t to the edges of G. Thus we denote by o, the value of

i
n=1l n-1
] P. .andby 1, that of yop over all weight assignments.
. 'lJ i i'j
j=1 j=i

For clarity in writing proofs, we define m = n-2. (x) denotes the
falling factorial x(x-1)...(x-r+1). We make use of the following .identities
-1

(t)
(p1) I (f")x (t-r)y_x -W-y-r ( Y )
. X

This follows readily from the binomial product identity (25) in
Knuth (11).

m
) mk) . -k - oM
(02 uzo(")z 2
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Finally, we have

m 2m m ! 2m-x-k
o) () (35) - i (53)
Lemma |
2-5; Zn- s o1 if =)
= Zn- 3 l i+ ij 10 if i#j
Proof: Let e = (v,w) be an (i:j) edge in G and assume e has length r.

Then there are
(iTl) (jT) (r=1) 4520t o (145-2) (1

assignment of weights to the edges from v and w which make e an (i:j) edge.
The first two terms represent the choices of edges less than r, the third
counts the ways to assign 1,2,...,r-1 to these edges, and the last counts

the ways to assign weights greater than r to the remaining edges.
Using identity (D1) we sum (1) over r:

¢ (‘)zmu
) (r=1) 145-2 (t-r) - (14)-2) = (‘+J'2 )

r=1

In the case of i = j we must multiply by 2 to account for the possibility
that e is a j - edge for v and i-edge for w. Dividing by (t), ., for the
2m+| edges considered here, yields the result.

Lemma 2:

= 2 - P
O% " nT ~ "k,k

Proof: Each vertex has a k-edge. Thus there are n end points of k edges.
Edges of type (k:k) account for 2tP,  , of them so there are n-tP , edges
in§ . The probability of such an edge is thus

iskl /t - n/t - Pk,k = 2/("'1) - Pk,k .
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= 2 | 2 2k=-2
2k=- A S
Tk :—n-[l+ (k_] )/2

k=1

Froef T"'ck_JZ. Pj.k‘FET ® Pk,k"z_nz"-i‘ J.E, (Y (jTl )/ (k-lz;»T_l]-l)

Now

() 7 (i) 20507 A e g () 2

so using this and identity (D2) we find that the sum in (2) approaches

1 kil (k-1+£) /21 N 2k-l =1

whence

2 2 0
%" a7 " 23 Pk Tt Piok

Similarly approximating Pk K yields the lemma.

Applying Stirling's approximation to (%::ﬁ) gives

Cor: For sufficiently iarge k and n >> k

-.'_
n

[“mr)]

By way of illustration we note a few of these values

] n-3 1

Pra = P23 5 P13 " Ze3) (2n5)  Im

n-2 n-2 -3

2,2 " TZn=3)(2n-5)° P2,3 = TN A K.

S = 3n2-5n = 3n
N "2(@n-3)Y T

P

= 5n
t‘z = n = tpz'z - tP] ’2 T .
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D. Minimal Spanning Trees

We first note the standard result about the structure of minimum

spanning trees:

Lemma 4: An edge e is in the MST M of G if and only if there is a partition
L+R of the vertices of G for which C(e) is least among edges {v,w)
satisfying v € L, w € R.

Remark 1: Clearly NE(v) € M, since we only need take L = {v}, R =V - {v}, so
M contains Fi. Thus of the n-1 edges in M, by Lemma 2 we know that approx-
imately 75% are l-edges. This constitutes a combinatorial demonstration of

a result first proved analytically by DeWitt (1).

The ease of finding these edges suggests the possibility of improved
MST algoritms. Indeed the results in this paper grew out of attempts to exploit

and generalize this observation.

If we consider FI as a subgraph, we have

Lemma 5:
F] is a forest with |Dl| components none of which is an isolated poin

Proof: As a subset of h, FI can contain no cycles, i.e., F| is a forest.
Let v be some vertex in FI and Vor Vr Voareees Vo be the path formed in
FI by putting v =NV ('i-l) until this procedure terminates. This only can

happen when some v, satisfies NV (vr) =v i.e., the path terminates in

r=1
a (1:1) edge. Hence each component has a (1:1) edge.

If (v,w) and (x,y) are (1:1) edges, let v = Vor Vireres Vp m X be
the unique path joining v and x (we can assume without loss of generality
that w ¢ v, and y ¢ vp_'.) But then we must have Ve NV (vp_l), Vp-1 NV (vp_z)
see V2 = NV (vj). This contradicts v_ = NV(v,).

Corollary: Each component of F, consists of a (1:1) edge with a (possibly
empty) tree rooted at each end. (see figure 1)

Note that the edges of the two trees are directed opposite to those in some
definitions of rooted trees.
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Figure 1: Typical Component of FI; e is8 of type (1:1)

We know that the MST M contains F] and that the expected number of
edges in FI is .75 n. This is a good start at building M and leads us to ask
if much more of M can be easily found in FZ' F3, etc? By way of answering

this we have the following
Theorem: Ex {|M 0N Fol 3> .123n
To prove this we need two lemmas.

Lemma 6: The probability that an edge e is of type (1:1) and NE(e) is of
type (2:k) is D(Zk/3k+lm).

Proof: The number of ways the edge f = NE(e) can be of type (2:k) and have
c(f) = r is given by

n-3
2("'2) Ik-') (t-r)s(n-z)_l_k(r'l)k (I)

In expression (*), 2(n-2) counts the number of ways to choose the
endpoints of f and(::%) counts the choices of endpoints for the edges from z
which are less than r (see Figure 2). Of the 3n-6 edges from vertices x,y,and z,
only these k-1 and e have lengths less than r and these can be assigned in
(r-l)k ways. The remaining edges other than f can be given weights greater

than r in (t-r)Sn-G-l-k ways .
Summing over r using DI yields

20-2)- (173) (03,6 /6n-6) - (3%7) = ()3, 2("2)/Gn-6) - (>77)

Dividing by (t); _c--the total number of ways the lengths may be assigned--
and approximating the binomial coefficients completes the proof.
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Lemma 7: Let e and e' be edges of type (1:1); let f = NE(e) and f = NE(e').
Then, Prob{fis of type (2:2) and f = f'} = 1/32n.

Proof: Let f = (v,w), e = (x,v), e' = (w,y) and cle) =r, c(f) = q, and
c(e') = s. Because of our assumptions on e,f, and e', all edges in the
coboundary of {x,y,v,w} have a cost greater than q. There are in - 16 such
edges. Also the edges (x,y), (x,w), (y,v) have cost greater than q so we
have to assign 4n - 13 costs from the t - q available. Similarly, we must
assign the values f and s fromq - 1. Finally, noting that x and y could

have been chosen in (n-2) (n-3) ways, we have the expression

2_(n-2)(n-3)(q-l)2 (t=Q)yn - 16 + 3

for the required probability which we can evaluate as

bn-11 2(n-2) (n-3)
(n-2) (0‘3)-(t)1|n_]0 / (hn-lﬂ)( nz ) = (ﬁn-lﬂ]s (t)jm_]u

This approaches 1/32n as n becomes large.

We now can complete the proof of the Theorem, first noting that
pl,l = Ti£:§T implies that there are about n/k4 edges of type (1:1). Each
such edge has a nearest neighbor edge in the MST and of type (2:k). Of these,
we know n/9 are of type (1:2) by Lemma 6. Using Lemma 7 we note that n/6k4 of
the edges of type (2:2+4) meet a type (1:1) edge at either end. These
observations suffice to show that the number of members of F, in the MST is
n/4 = n/9 - n/64 = .123n, prbving the Theorem.

<r: 5
k =1 i.—-"""""} x /Y
edges e S - -
‘ \'\. //
>rr e e _ -~ ¢
// f:\"\.
x s e Yé n = 3 n-= h \v/, f ‘\ﬁ.u
N\ ) edges edges|; =~
Figure 2: for Lemma 6 Figure 3: for Lemma 7
Ehfun
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E. Shortest edges and algorithms

The forgoing results have implications for general as well as distributed
algorithms.

We have seen that essentially 7/8 of the MST can be found among the shortest

2 edges, i.e., in S,- This suggests that the entire MST will be found in S
for a very small k. From an algorithmic point of view, these edges are easy to
find. On the one hand, the shortest ''few'" from each vertex can be flagged when
the data is input at virtually no extra computing cost. I|f the data are
constantly being updated, then maintaining a heap of edge distances from each

vertex provides an efficient way to access the short edges.

The actual integration of these edges into a complete, efficient MST algoritnm
is dependent on the choice of data structure for the graph representation. As
such it merits a separate discussion as will be forthcoming in (14).

In distributed environments, nodes will generally 'know' the distance (cost,
delay) to. their nearest neighbors. Information about more distant nodes may be
unavailable, costly, or stale. |If this local information can be exploited for
required computations, communications overhead can be decreased. Low-cost
spanning trees are a commonly used structure supporting network activity and
the previous sections suggest that such a tree can be built by each node making

connection to its k nearest neighbors.

0f course, our analysis is not complete; namely, we need to know a value of k
sufficient to assure connection. Putting k = logn is an attractive guess and

‘raises:

Question 1: On a random weighted graph, what is the relation between E, the

smallest n'log n edges,and Slogn ;

In practice the absolute least cost tree is rarely required; hence we may only
want to be sure that k is sufficient to guarantee connectivity at reasonable

cost. Thus we ask:

Question 2: For what k is Sk connected? This is answered in (17) for the model

of §A.3 above: & > 2 implies lim{Prob(G ¢ UD(n,s) is disconnected} = O(n-C/z).
n+ =

Question 3: Suppose that m is the cost of the MST and s; that of the cheapest

tree in Sk; what is the expected value of S, - m 7

Similar questions and analysis apply to shortest paths, which are perhaps even
more fundamental to networks. For example, De Witt and Krieger (3) showed that

generally shortest paths have relatively few edges. In the present context, we
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would like to have answers to

Question 4: If E is the set of edges in the shortest path from v to w, what is
the probability P that E S Sk?

Clearly answers to these and similar questions will provide tools for more
efficient computation.
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